Lower-Dimensional Systems and Molecular Electronics


Book Description

This volume represents the written account of the NATO Advanced Study Institute "Lower-Dimensional Systems and Molecular Electronics" held at Hotel Spetses, Spetses Island, Greece from 12 June to 23 June 1989. The goal of the Institute was to demonstrate the breadth of chemical and physical knowledge that has been acquired in the last 20 years in inorganic and organic crystals, polymers, and thin films, which exhibit phenomena of reduced dimensionality. The interest in these systems started in the late 1960's with lower-dimensional inorganic conductors, in the early 1970's with quasi-one-dimensional crystalline organic conductors. which by 1979 led to the first organic superconductors, and, in 1977, to the fITSt conducting polymers. The study of monolayer films (Langmuir-Blodgett films) had progressed since the 1930's, but reached a great upsurge in . the early 1980's. The pursuit of non-linear optical phenomena became increasingly popular in the early 1980's, as the attention turned from inorganic crystals to organic films and polymers. And in the last few years the term "moleculw' electronics" has gained ever-increasing acceptance, although it is used in several contexts. We now have organic superconductors with critical temperatures in excess of 10 K, conducting polymers that are soluble and processable, and used commercially; we have films of a few monolayers that have high in-plane electrical conductivity, and polymers that show great promise in photonics; we even have a few devices that function almost at the molecular level.




Unimolecular and Supramolecular Electronics I


Book Description

Charge Transport in Organic Semiconductors, by Heinz Bässler and Anna Köhler. Frontiers of Organic Conductors and Superconductors, by Gunzi Saito and Yukihiro Yoshida. Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics, by Julio R. Pinzón, Adrián Villalta-Cerdas and Luis Echegoyen. Current Challenges in Organic Photovoltaic Solar Energy Conversion, by Cody W. Schlenker and Mark E. Thompson.- Molecular Monolayers as Semiconducting Channels in Field Effect Transistors, by Cherie R. Kagan. Issues and Challenges in Vapor-Deposited Top Metal Contacts for Molecule-Based Electronic Devices, by Masato M. Maitani and David L. Allara. Spin Polarized Electron Tunneling and Magnetoresistance in Molecular Junctions, by Greg Szulczewski.




Unimolecular and Supramolecular Electronics II


Book Description

G. C. Solomon C. Herrmann M. A. Ratner Molecular Electronic Junction Transport: Some Pathways and Some Ideas R. M. Metzger D. L. Mattern Unimolecular Electronic Devices B. Branchi F. C. Simeone M. A. Rampi Active and Non-Active Large-Area Metal–Molecules–Metal Junctions C. Li A. Mishchenko T. Wandlowski Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface K. W. Hipps Tunneling Spectroscopy of Organic Monolayers and Single Molecules N. Renaud M. Hliwa C. Joachim Single Molecule Logical Devices




Nano and Molecular Electronics Handbook


Book Description

There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.




Organic and Molecular Electronics


Book Description

An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.




Molecular Electronics and Molecular Electronic Devices


Book Description

Molecular Electronics and Molecular Electronic Devices is a new book series that reflects the state of the art in the science and technology of molecular electronic devices. It provides a comprehensive review of current problems and the latest information regarding all aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology.




Advances in Synthetic Metals


Book Description

This edited work contains eight extensive, review-type contributions by leading scientists in the field of synthetic metals. The authors were invited by the organisers of the International Conference on Science and Technology of Synthetic Metals '98 (ICSM'98) to review the progress of research in the past two decades in a unifying and pedagogical manner. The present work highlights the state-of-the-art of the field and assesses the prospects for future research.




Mixed Valency Systems: Applications in Chemistry, Physics and Biology


Book Description

Mixed valency is one of various names used to describe compounds which contain ions of the same element in two different formal states of oxidation. The existence of mixed valency systems goes far back into the geological evolutionary history of the earth and other planets, while a plethora of mixed valency minerals has attracted attention since antiquity. Indeed, control of the oxidation states of Fe in its oxides (FeO, Fe304' Fe203) was elegantly used in vase painting by the ancient Greeks to produce the characteristic black and red Attic ceramics (Z. Goffer, "Archaeological Chemistry", Wiley, New York, 1980). It was, however, only 25 years ago that two reviews of mixed valency appeared in the literature almost simultaneously, signalling the first attempt to treat mixed valency systems as a separate class of compounds whose properties can be correlated with the molecular and the electronic structure of their members. Then mixed valency phenomena attracted the interest of disparate classes of scientists, ranging from synthetic chemists to solid state physicists and from biologists to geologists. This activity culminated with the NATO ASI meeting in Oxford in 1979. The 1980's saw again a continuing upsurge of interest in mixed valency. Its presence is a necessary factor in the search for highly conducting materials, including molecular metals and superconductors. The highly celebrated high T c ceramic superconducting oxides are indeed mixed valency compounds.




Materials and Measurements in Molecular Electronics


Book Description

Materials and Measurements in Molecular Electronics presents new developments in one of the most promising areas of electronics technology for the 21st century. Conjugated polymers, carbon clusters, and many other new molecular materials have been synthesized or discovered in recent years, and some now are on the threshold of commercial application. In the development of molecular materials, detailed knowledge of the structures and electronic states of molecular aggregates is essential. The focus of this book is on the development of new molecular materials and measuring techniques based on modern spectroscopy; included are such topics as Langmuir-Blodgett films, cluster materials, organic conductors, and conjugated electroluminescent polymers.




Organic Conductors, Superconductors and Magnets: From Synthesis to Molecular Electronics


Book Description

The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.