Lubricants from Renewable Feedstocks


Book Description

Written and edited by a team of industry experts, this exciting new volume covers the field of renewable lubricants, their processing, optimization, end-use application, and their future potential. Biolubricants are a viable alternative to synthetic lubricants because they are produced from organic materials such as plant oils, waste oils and by-products. Renewable biolubricants are the subject of research because of their biodegradability, eco-friendliness, and favorable socioeconomic consequences to counteract imitations of synthetic lubricants. Biolubricants have thus emerged as an ideal substitute for mineral oil-based lubricants, as significant economic and environmental acceptability has been received over the last few decades and it has been estimated that there would be a further steady growth in its demand over the next few decades. Furthermore, biolubricants’ high-quality lubricating properties, high load carrying ability, long service life, and fast biodegradability have expanded the recent interest. These lubricants can be derived from different sources of vegetable oils, non-edible oils, waste cooking oils (WCO) and microbe-derived oils. Among all these sources, the use of WCOs and microbe-derived oils have received immense interest and provide superior quality biolubricants. This outstanding new volume covers the prospects and processing of feedstocks for biolubricants, extraction techniques, new advancements in the field of bio-based lubricants, epoxide lubricants, hydrogenated lubricants, microbial-based biolubricants, nano-biolubricants, polyester-based biolubricants, lubricants from waste oils and waste materials, its economic and environmental acceptability and biorefinery approaches. The book will be helpful to industry professionals and engineers of all types, students, and other stakeholders working in the field of lubricant, chemical engineering, mechanical engineering and material science, tribological sectors and biorefinery industries. It will also be of great interest to new start-up companies working in the area of processing feedstocks for biolubricant production and end use application, biorefineries, valorization of biolubricant waste, and in the recycling industries.




Biolubricants


Book Description

Lubricants are essential in engineering, however more sustainable formulations are needed to avoid adverse effects on the ecosystem. Bio-based lubricant formulations present a promising solution. Biolubricants: Science and technology is a comprehensive, interdisciplinary and timely review of this important subject.Initial chapters address the principles of lubrication, before systematically reviewing fossil and bio-based feedstock resources for biodegradable lubricants. Further chapters describe catalytic, (bio) chemical functionalisation processes for transformation of feedstocks into commercial products, product development, relevant legislation, life cycle assessment, major product groups and specific performance criteria in all major applications. Final chapters consider markets for biolubricants, issues to consider when selecting and using a lubricant, lubricant disposal and future trends.With its distinguished authors, Biolubricants: Science and technology is a comprehensive reference for an industrial audience of oil formulators and lubrication engineers, as well as researchers and academics with an interest in the subject. It provides an essential overview of scientific and technological developments enabling the cost-effective improvement of biolubricants, something that is crucial for the green future of the lubricant industry. - A comprehensive, interdisciplinary and timely review of bio-based lubricant formulations - Addresses the principles of lubrication - Reviews fossil and bio-based feedstock resources for biodegradable lubricants




Industrial Oil Crops


Book Description

Industrial Oil Crops presents the latest information on important products derived from seed and other plant oils, their quality, the potential environmental benefit, and the latest trends in industrial uses. This book provides a comprehensive view of key oil crops that provide products used for fuel, surfactants, paints and coatings, lubricants, high-value polymers, safe plasticizers and numerous other products, all of which compete effectively with petroleum-derived products for quality and cost. Specific products derived from oil crops are a principle concern, and other fundamental aspects of developing oil crops for industrial uses are also covered. These include improvement through traditional breeding, and molecular, tissue culture and genetic engineering contributions to breeding, as well as practical aspects of what is needed to bring a new or altered crop to market. As such, this book provides a handbook for developing products from renewable resources that can replace those currently derived from petroleum. Led by an international team of expert editors, this book will be a valuable asset for those in product research and development as well as basic plant research related to oil crops. - Up-to-date review of all the key oilseed crops used primarily for industrial purposes - Highlights the potential for providing renewable resources to replace petroleum derived products - Comprehensive chapters on biodiesel and polymer chemistry of seed oil - Includes chapters on economics of new oilseed crops, emerging oilseed crops, genetic modification and plant tissue culture technology for oilseed improvement




Lubricants from Renewable Feedstocks


Book Description

Written and edited by a team of industry experts, this exciting new volume covers the field of renewable lubricants, their processing, optimization, end-use application, and their future potential. Biolubricants are a viable alternative to synthetic lubricants because they are produced from organic materials such as plant oils, waste oils and by-products. Renewable biolubricants are the subject of research because of their biodegradability, eco-friendliness, and favorable socioeconomic consequences to counteract imitations of synthetic lubricants. Biolubricants have thus emerged as an ideal substitute for mineral oil-based lubricants, as significant economic and environmental acceptability has been received over the last few decades and it has been estimated that there would be a further steady growth in its demand over the next few decades. Furthermore, biolubricants’ high-quality lubricating properties, high load carrying ability, long service life, and fast biodegradability have expanded the recent interest. These lubricants can be derived from different sources of vegetable oils, non-edible oils, waste cooking oils (WCO) and microbe-derived oils. Among all these sources, the use of WCOs and microbe-derived oils have received immense interest and provide superior quality biolubricants. This outstanding new volume covers the prospects and processing of feedstocks for biolubricants, extraction techniques, new advancements in the field of bio-based lubricants, epoxide lubricants, hydrogenated lubricants, microbial-based biolubricants, nano-biolubricants, polyester-based biolubricants, lubricants from waste oils and waste materials, its economic and environmental acceptability and biorefinery approaches. The book will be helpful to industry professionals and engineers of all types, students, and other stakeholders working in the field of lubricant, chemical engineering, mechanical engineering and material science, tribological sectors and biorefinery industries. It will also be of great interest to new start-up companies working in the area of processing feedstocks for biolubricant production and end use application, biorefineries, valorization of biolubricant waste, and in the recycling industries.




Oils and Fats as Raw Materials for Industry


Book Description

OILS AND FATS AS RAW MATERIALS FOR INDUSTRY This new volume emphasizes the sources, structure, chemistry, treatment, modification, and potential applications for oils and fats as raw materials in industry. Oils and fats can be used as raw materials in many industries including food and agriculture, as surfactants in laundry detergents and cosmetics, as well as in pharmaceuticals. Moreover, unsaturated vegetable oils are also suitable to form epoxides and hence, are important in the manufacturing of paints and adhesives. Limited sources of petrochemicals and their harmful effects on health and the environment also promote the use of naturally occurring oils and fats as biodiesel after some chemical modification. Moreover, a vast variety of nonedible oils that can be obtained from easily cultivable plant species are receiving great interest from researchers because they not only yield cost-effective products but are also proven as a substrate to promote sustainable research. In this book, the editors will cover all possible industrial applications of the products that are formed using edible and non-edible vegetable oils. Vegetable oils are not a new research area, although they are considered an evergreen or long-lasting topic as most of the research in synthetic chemistry has been carried out on vegetable oils.




The Biodiesel Handbook


Book Description

The second edition of this invaluable handbook covers converting vegetable oils, animal fats, and used oils into biodiesel fuel. The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental impacts, as well as the status of the biodiesel industry worldwide. - Incorporates the major research and other developments in the world of biodiesel in a comprehensive and practical format - Includes reference materials and tables on biodiesel standards, unit conversions, and technical details in four appendices - Presents details on other uses of biodiesel and other alternative diesel fuels from oils and fats




Performance Characterization of Lubricants


Book Description

The text discusses the fundamentals of lubrication science and technology linking the science concepts to engineering practices. It further explores the performance characterization of lubrication systems by utilizing sophisticated experiments and tests and motivates the readers to develop their conclusions and reach solutions based on modern tools and techniques. This book: Presents the principles of surface and lubricant chemistry, and its implementation to devise engineering solutions for various application-based systems. Discusses viscosity index improvers, tribology of green lubricants, and biolubricants from non-edible oils. Highlights 2D nanomaterials lubricants, biogreases, hydrogel and lubricants for extreme temperature and pressure conditions. Explains lubrication for electrical, biomedical, automobile, marine, turbine and aerospace applications. Covers design considerations, formulations, and compositions of lubricants for high-temperature applications in diverse areas. Explores the simulation, computational, and empirical models to characterize, quantify and mitigate the adverse effects of friction. It is primarily written for senior undergraduate and graduate students, and academic researchers in the fields of mechanical engineering, production engineering, industrial engineering, aerospace engineering, and manufacturing engineering.




Green Chemistry


Book Description

The challenge for today's new chemistry graduates is to meet society's demand for new products that have increased benefits, but without detrimental effects on the environment. Green Chemistry: An Introductory Text outlines the basic concepts of the subject in simple language, looking at the role of catalysts and solvents, waste minimisation, feedstocks, green metrics and the design of safer, more efficient, processes. The inclusion of industrially relevant examples throughout demonstrates the importance of green chemistry in many industry sectors. Intended primarily for use by students and lecturers, this book will also appeal to industrial chemists, engineers, managers or anyone wishing to know more about green chemistry.




23rd International Colloquium Tribology


Book Description

The conference provides an international exchange forum for the industry and the academia. Leading university researchers present their latest findings, and representatives of the industry inspire scientists to develop new solutions.




Advances in Additive Manufacturing Technologies


Book Description

We are delighted to present the proceedings of the 5th International Conference on Advances in Additive Manufacturing Technologies (ICAAMT 2023). This conference serves as a premier forum for researchers, practitioners, and industry experts to share their latest findings, innovations, and insights in the field of additive manufacturing. The rapid advancements and the increasing adoption of these technologies across various sectors underscore the importance of this gathering. The conference was held from November 27-29, 2023, in Chennai, India and organized by the Department of Mechanical Engineering, Chennai Institute of Technology, Chennai, India.