3D Printing For Dummies


Book Description

Print out whatever you can dream up 3D Printing For Dummies is an easy reference for anyone new to the process of taking a digital file and turning it into an object in the real world. (Pretty amazing stuff, right?) It’s also a handy guide for more experienced users looking to learn the latest and greatest in additive manufacturing. Updated for the latest generation of machines and materials, this book walks you through creating models and printing 3D objects. You’ll get the scoop on the impact of these versatile machines in production and manufacturing, reuse and recycling, intellectual property design controls, and more. It’s an exciting time to get into 3D printing, and this friendly Dummies guide is here to help you do it. Wrap your mind around the technology of 3D printing Understand how 3D printing is transforming industries Get an intro to making your own digital models Consider the pros and cons of 3D printing for your hobby or business needs 3D Printing For Dummies is a perfect resource for anyone interested in learning about and taking advantage of 3D printing technology.




Hacking the Digital Print


Book Description

Don’t bother reading this book unless you’re ready to get your hands dirty. In Hacking the Digital Print, artist Bonny Lhotka redefines what it means to be a photographer. For one thing, you don't always need Photoshop to alter the reality you capture through your lens. In this book, you’ll learn how to create unique images using tools you make and modify yourself. Lhotka shows you how to use analog distortion filters, custom textures, and lens modifiers to create images that look like you made them, not an app. You’ll also learn how to re-create classic printmaking techniques using non-toxic digital alternatives, including a water-based transfer solution that’s safe to use anywhere, whether it’s the studio, classroom, or kitchen counter. Anyone can push a button and create a nice print–there is little challenge in getting a high-quality image out of a desktop printer these days. Lhotka shows you how to take your work to the next level by printing on materials such as wood, glass, plastics, and metal. For the truly adventurous, Lhotka shares her custom techniques for taking photographs and applying them to 3D-printed objects created with popular consumer 3D printers. Part artist/part mad scientist, Lhotka has spent many hours experimenting, hacking, and tearing things apart to discover new ways to take, make, and print images. She encourages you to take the techniques you’ll learn in this book, hack them, and make them your own. With some techniques you will fail. It will be messy. You will try and have to try again. But in the process, you will make your own exciting discoveries, find solutions to your own problems, and create a body of work that is uniquely yours.




3D Printing


Book Description

3D printing is the hottest new technology. It allows just about any at-home inventor, artist, or engineer to design, create, and "print" their own parts, artwork, or whatever else can be imagined — all at very reasonable costs. Idiot's Guides: 3D Printing explores this new revolution by explaining all of the basics of materials, parts, software, modeling, design, and finishing. The book then takes it to the next level by teaching readers how to take their new skills and print some simple, fun projects. Helpful advice on setting up a home-built 3D printer, buying a manufactured printer, selecting raw materials, and finding plans and projects online, are also covered.




Studies into Additive Manufacturing for In-Space Manufacturing


Book Description

Additive manufacturing (AM) for space exploration has become a growing opportunity as long-range space missions evolve. In partnership with the National Space Grant Foundation and NASA, students from the University of Wisconsin-Milwaukee participated in the 2014-15 X-Hab Academic Innovation Challenge, with participants tasked with developing new AM solutions that would be recyclable with minimal loss in mechanical properties. The teams investigated materials, characterization, testing, modeling, and tool development, including the ability to employ reusable carbon-fiber tension ties. The tools developed show that it is possible to employ thermoplastic polymer materials fabricated using AM together with reusable and flexible high-performance carbon-fiber-based composite ties. The AM-printed part is completely recyclable. The carbon-fiber composite ties are repurposed into new structural configurations without loss in properties. The results of this project are now published by SAE International. Studies into Additive Manufacturing for In-Space Manufacturing is a series of interconnected papers that explore: Lessons learned in processing of recycled thermoplastic filaments The criticality of process control on the print process The effects of orientation angles and print parameters on mechanical behavior Microstructural analysis Case studies of tools included in the spacecraft's toolbox




3D Printing


Book Description

This book is an introduction to the wide and varied world of 3D printing—an incredible technology used across an ever-growing list of industries. As 3D printing continues to skyrocket in popularity, it’s increasingly important to understand how these machines work and how to apply 3D printing technology to personal and professional interests. More important still, this book highlights how surprisingly easy 3D printers can be to use, even for readers who don’t consider themselves particularly tech-savvy. This book provides a comprehensive overview of 3D printing for first-time users. The text introduces some of the most popular types of 3D printing technology available, as well as some of the most exciting and compelling applications across industry today. The content dives deeply into one of the most popular and widely accessible 3D print technology on the market: fused deposition modeling (FDM) 3D printing. The reader will learn basic FDM 3D printer anatomy, software settings, as well as the tips and tricks to master your own FDM 3D printer. The book provides a firm understanding of what FDM 3D printing excels at, its current limitations, and how to troubleshoot and overcome some of the most common 3D printing problems. The book then provides some ‘STEAM-building’ cross-disciplinary challenges and applications for the reader to complete at home. This book is for novice readers who might be early in their 3D printing journey. For those looking to learn more about introductory 3D printing and curious about how to get started, this is an excellent place to start. By the end of the book, the reader should have all the understanding and tools necessary to start 3D printing with confidence.




3D Printing


Book Description

3D Printing is a faster, more cost-effective method for building prototypes from three-dimensional computer-aided design (CAD) drawings. 3D Printing provides a fundamental overview of the general product design and manufacturing process and presents the technology and application for designing and fabricating parts in a format that makes learning easy. This user-friendly book clearly covers the 3D printing process for designers, teachers, students, and hobbyists and can also be used as a reference book in a product design and process development.




Academic Libraries and Public Engagement With Science and Technology


Book Description

Libraries have historically played a role as a community builder, providing resources and spaces where knowledge can be archived, shared and created. They can also play a pivotal role in fostering the public's understanding of science and scientific processes. From makerspaces to data visualization labs to exhibits, many libraries already delve into scientific explorations and many more could join them. Scientists often need to include "broader impacts" goals in grant proposals, but they might not know where to begin or feel that they do not have the time to devote to public engagement. This is where libraries and librarians can help. Research in science communication also supports tapping into libraries for public engagement with science. Studies show that it is important for scientists to present findings in an apolitical way-not aligning with one solution or one way of thinking and not being seen as an activist (Druckman, 2015; Jamieson & Hardy, 2014). One of the core tenets of librarians and libraries is to present information in a neutral way. Research also shows that Informal conversations about science can have a greater effect on people than reading about it online or hearing about it on the news (Eveland & Cooper, 2013). Again, libraries can play a role in fostering these types of conversations. Given this landscape, this book will demonstrate concrete ways that libraries and librarians can play a role in fostering public engagement with science. In addition to background information on the current landscape of public knowledge and understanding of science, it will also include best practices and case studies of different types of programming and services that libraries can offer. Often libraries do not jump to mind when people think about science education or science literacy, and many librarians do not come from a science background. Literature on science programming and sharing science is largely absent from the library field. This book will help give confidence to librarians that they can participate in engaging the public with science. At the same time, it will provide a conduit to bring informal science educators, communication officers from universities or research organizations who share scientific discoveries with the public, and librarians together to explore ways to align their work to promote scientific literacy for all.




3D Printing


Book Description

Planning and implementing a 3D printing service in a library may seem like a daunting task. Based upon the authors’ experience as early adopters of 3D technology and running a successful 3D printing service at a large academic library, this guide provides the steps to follow when launching a service in any type of library. Detailed guidance and over 50 graphics provide readers with sage guidance and detailed instructions on: planning a proposal printer selection tips preparing the location addressing staff concerns for new service developing service workflows and procedures managing inevitable disasters developing policies conducting the “reference interview” for 3D printing staff training tips outreach activities This book brings into one place all the guidance you need for developing and implementing a 3D printing service in any library.




Resilient Hybrid Electronics for Extreme/Harsh Environments


Book Description

The success of future innovative technology relies upon a community with a shared vision. Here, we present an overview of the latest technological progress in the field of printed electronics for use in harsh or extreme environments. Each chapter unlocksscientific and engineering discoveries that will undoubtedly lead to progression from proof of concept to device creation. The main topics covered in this book include some of the most promising materials, methods, and the ability to integrate printed materials with commercial components to provide the basis for the next generation of electronics that are dubbed “survivable” in environments with high g‐orces, corrosion, vibration, and large temperature fluctuations. A wide variety of materials are discussed that contribute to robust hybrid electronics, including printable conductive composite inks, ceramics and ceramic matrix composites, polymer‐erived ceramics, thin metal films, elastomers, solders and epoxies, to name a few. Collectively, these materials and associated components are used to construct conductive traces, interconnects, antennas, pressure sensors, temperature sensors, power inducting devices, strain sensors and gauges, soft actuators, supercapacitors, piezo ionic elements, resistors, waveguides, filters, electrodes, batteries, various detectors, monitoring devices, transducers, and RF systems and graded dielectric, or graded index (GRIN) structures. New designs that incorporate the electronics as embedded materials into channels, slots and other methods to protect the electronics from the extreme elements of the operational environment are also envisioned to increase their survivability while remaining cognizant of the required frequency of replacement, reapplication and integration of power sources. Lastly, the ability of printer manufacturers, software providers and users to work together to build multi‐axis, multi‐material and commercial‐off‐the‐shelf (COTS) integration into user‐friendly systems will be a great advancement for the field of printed electronics. Therefore, the blueprint for manufacturing resilient hybrid electronics consists of novel designs that exploit the benefits of advances in additive manufacturing that are then efficiently paired with commercially available components to produce devices that exceed known constraints. As a primary example, metals can be deposited onto polymers in a variety of ways, including aerosol jetting, microdispensing, electroplating, sintering, vacuum deposition, supersonic beam cluster deposition, and plasma‐based techniques, to name a few. Taking these scientific discoveries and creatively combining them into robotic, multi‐material factories of the future could be one shared aim of the printed electronics community toward survivable device creation.




Handbook of Surgical Planning and 3D Printing


Book Description

Handbook of Surgical Planning and 3D Printing: Applications, Integration, and New Directions?covers 3D printing and surgical planning from clinical, technical and economic points-of-view. This book fills knowledge gaps by addressing: (1) What type of medical images are needed for 3D printing, and for which specific application? (2) What software should be used to process the images, should the software be considered a medical device? (3) Data protection? (4) What are the possible clinical applications and differences in imaging, segmentation, and 3D printing? And finally, (5) What skills, resources, and organization are needed? Sections cover technologies involved in 3D printing in health: data structure, medical images and segmentation, printing materials and 3d printing, 3D printing and Clinical Applications: orthopedic surgery, neurosurgery, maxillofacial, orthodontistry, surgical guides, integrating 3D printing Service in Hospitals: infrastructures, competences, organization and cost/benefits, and more. - Provides a unique insight into a technological process and its applications - Heps readers find answers to practical and technical questions concerning 3D printing and surgical planning - Presents deep insights into new directions of 3D printing in healthcare and related emerging applications such as bioprinting, biocompatible materials and metal printing for custom-made prosthetic design