Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials


Book Description

This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including: • Circularly polarized luminescence • Luminescence bioimaging with lanthanide complexes • Two-photon absorption of lanthanide complexes • Chemosensors • Upconversion luminescence • Excitation spectroscopy • Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a ‘one stop shop’ for all key references.




Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials


Book Description

This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including: • Circularly polarized luminescence • Luminescence bioimaging with lanthanide complexes • Two-photon absorption of lanthanide complexes • Chemosensors • Upconversion luminescence • Excitation spectroscopy • Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a ‘one stop shop’ for all key references.




Lanthanide Luminescence


Book Description

Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.




Luminescent Nanomaterials


Book Description

In recent decades, luminescent nanomaterials have generated great interest in the scientific community due to their unique properties, which are different from those of their bulk counterparts, and their use in a wide variety of applications. Today, luminescent nanomaterials are used in a number of applications such as displays, solid-state lighting, solar cells, long afterglow, dosimetry, theft prevention, medical imaging, phototherapy, and quantum and gas sensing. This book presents cutting-edge research from experts in the field of synthesis and characterization of luminescent nanomaterials and their potential applications. It covers interesting topics in semiconductor physics, photochemistry, physical chemistry, materials science, and luminescence, and will be useful for beginners and advanced researchers interested in this field.




Lanthanide and Actinide Chemistry


Book Description

LANTHANIDE AND ACTINIDE CHEMISTRY Lanthanides and actinides, also known as “f elements,” are a group of metals which share certain important properties and aspects of electronic structure. They have a huge range of applications in the production of electronic devices, magnets, superconductors, fuel cells, sensors, and more. The cursory treatment of these important metals in most inorganic chemistry textbooks makes a book-length treatment essential. Since 2006, Lanthanide and Actinide Chemistry has met this need with a thorough, accessible overview. With in-depth accounts of the lanthanides, actinides, and transactinides, this book is ideal for both undergraduate and postgraduate students in inorganic chemistry or chemical engineering courses. Now updated to reflect groundbreaking recent research, this promises to continue as the essential introductory volume on the subject. Readers of the second edition of Lanthanide and Actinide Chemistry will also find: New and expanded subject areas including lanthanide enzymes, single-molecule magnets, luminescence and upconversion, organometallic and coordination chemistry; and many more. Up-to-date information on the myriad modern applications of f-elements Lists of objectives and learning goals at the start of each chapter Lanthanide and Actinide Chemistry is ideal for advanced undergraduates and graduate students in f-element chemistry, inorganic chemistry, or any related field. INORGANIC CHEMISTRY ADVANCED TEXTBOOK This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas, such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.




Lanthanide-Based Multifunctional Materials


Book Description

Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs serves as a comprehensive and state-of the art review on these promising compounds, delivering a panorama of their extensive and rapidly growing applications. After an introductory chapter on the theoretical description of the optical and magnetic behaviour of lanthanides and on the prediction of their properties by ab-initio methods, four chapters are devoted to lanthanide-based OLEDs, including the latest trends in visible emitters, the emerging field of near infrared emitters and the first achievements attained in the field of chiral OLEDs. The use of lanthanide complexes as molecular magnets spreads over another two chapters, which explain the evolution of 4f-elements-based SIMs and the most recent advances in heterometallic 3d–4f SMMs. Other very active research areas are covered in the remaining five chapters, dedicated to lanthanide-doped germanate and tellurite glasses, luminescent materials for up-conversion, luminescent thermosensors, multimodal imaging and therapeutic agents, and chemosensors. The book is aimed at academic and industrial researchers, undergraduates and postgraduates alike, and is of particular interest for the Materials Science, Applied Physics and Applied Chemistry communities. Includes the latest progress on lanthanide-based materials and their applications (in OLEDs, SIMs, doped matrices, up-conversion, thermosensors, theragnostics and chemosensors) Presents basic and applied aspects of the Physics and Chemistry of lanthanide compounds, as well as future lines of action Covers successful examples of devices and proofs-of-concept and provides guidelines for the rational design of new materials




Handbook of Rare Earth Elements


Book Description

The reference work describes in its new edition still more up-to-date methods for the recycling and purifi cation processes of rare earth element analysis for industrial and scientific purposes alike. Due to their vast applications, from computer hardware to mobile phones and electric cars, REEs have become a valuable resource for our modern life. New topics: emission spectroscopy, analysis of environmental samples and pharmaceutical applications.







Introduction to Molecular Magnetism


Book Description

This first introduction to the rapidly growing field of molecular magnetism is written with Masters and PhD students in mind, while postdocs and other newcomers will also find it an extremely useful guide. Adopting a clear didactic approach, the authors cover the fundamental concepts, providing many examples and give an overview of the most important techniques and key applications. Although the focus is one lanthanide ions, thus reflecting the current research in the field, the principles and the methods equally apply to other systems. The result is an excellent textbook from both a scientific and pedagogic point of view.




Upconverting Nanoparticles


Book Description

Modern learning resource providing broad coverage of the rapidly-advancing field of upconverting nanoparticles This modern reference explains photon upconversion technology using nanoparticles from first principles to novel and future applications in imaging, sensing, catalysis, energy technology, biomedicine, and many other areas. Expert authors discuss both established and novel materials and applications, going far beyond the coverage of previously published books on the subject. Key topics covered in the book include: Synthesis, characterization, and basic properties of nanoparticles with photon-upconverting properties New types of upconverting nanoparticles, including transition metal- and rare earth-doped materials, metal-organic frameworks, core/shell particles, and surface-modified particles Current and emerging application areas for upconverting nanoparticles, including heating, lighting, sensing, and detection Biomedical uses of nanoparticles, including photodynamic therapy Photon upconversion using nanoparticles has opened the door to a new universe of light-powered technology. This book is a key resource for scientists, physicists, and chemists across a wide range of disciplines who wish to master the theory, methods and applications of this powerful new technology.