Magnetohydrodynamic Electrical Power Generation


Book Description

Magnetohydrodynamic Electrical Power Generation Hugo K. Messerle University of Sydney, Australia The global demand for energy continues to grow. Magnetohydrodynamic (MHD) conversion processes offer a highly efficient, clean and direct conversion of energy for power generation and propulsion. By converting the kinetic energy of a flowing fluid into electricity directly, MHD systems help address the problems of environmental pollution. At the same time MHD is particularly suitable for primary energy sources or fuels providing energy at temperatures extending far beyond those manageable by any conventional thermal conversion plant. It therefore offers a potentially more effective utilisation of fossil and nuclear fuels. The author covers all aspects of MHD power generation, including the design and operation of MHD conversion systems in practice. Features include: A comprehensive introduction to the principles behind the interaction of magnetic field and electric currents with electrically conducting fluids in the conversion of energy. Coverage of all aspects of generator configurations, as well as the disk generator, multi-phase converters, and propulsion systems. Study of the design for AC power generation, covering the control and power conditioning of the generator and the integration of such designs into existing power systems. Study of the use of MHD plant as part of a topping cycle combined with a steam and/or gas turbine or ternary cycle potentially leading to combined cycle efficiencies of up to 60%. Relevant worked examples in each chapter to assist the reader with self-study and the understanding of the topic. This text will appeal to advanced students in power engineering, physics and mechanics. Practising engineers and scientists is the field of power technology will find if an excellent practical reference and a basis for developing ideas on large scale MHD processes. Magnetohydrodynamic Electrical Power Generation forms a part of the Energy Engineering Learning Package. This innovative distance learning package has been established to train power engineers to meet today’s and tomorrow’s challenges in this exciting field. Organised by a team of distinguished, international academics, the modular course is aimed at advanced undergraduate and postgraduate students, as well as power engineers working in industry. World Solar Summit Process







Engineering Magnetohydrodynamics


Book Description

Suitable for advanced undergraduates and graduate students in engineering, this text introduces the concepts of plasma physics and magnetohydrodynamics from a physical viewpoint. The first section of the three-part treatment deals mainly with the properties of ionized gases in magnetic and electric fields, essentially following the microscopic viewpoint. An introduction surveys the concepts of ionized gases and plasmas, together with a variety of magnetohydrodynamic regimes. A review of electromagnetic field theory follows, including motion of an individual charged particle and derivations of drift motions and adiabatic invariants. Additional topics include kinetic theory, derivation of electrical conductivity, development of statistical mechanics, radiation from plasma, and plasma wave motion. Part II addresses the macroscopic motion of electrically conducting compressible fluids: magnetohydrodynamic approximations; description of macroscopic fluid motions; magnetohydrodynamic channel flow; methods of estimating channel-flow behavior; and treatment of magnetohydrodynamic boundary layers. Part III draws upon the material developed in previous sections to explore applications of magnetohydrodynamics. The text concludes with a series of problems that reinforce the teachings of all three parts.







Direct Energy Conversion Technologies


Book Description

This book is designed for students and professionals who specialize in energy technologies and power plant engineering. It covers the mathematics and physics of both current conversion, such as solar cells, fuel cells, MHD, thermoelectric, and thermionic power generation, but also discusses emerging conversion technologies such as solar thermal, nuclear fusion, and hydrogen energy. Features: Covers both current conversion technologies as well as emerging technologies, such as solar thermal, nuclear fusion, and hydrogen energy Written in simple language, illustrated by diagrams, mathematical analysis, and numerical examples




Geomagnetically Induced Currents from the Sun to the Power Grid


Book Description

An introduction to geomagnetic storms and the hazards they pose at the Earth’s surface Geomagnetic storms are a type of space weather event that can create Geomagnetically Induced Currents (GICs) which, once they reach Earth’s surface, can interfere with power grids and transport infrastructure. Understanding the characteristics and impacts of GICs requires scientific insights from solar physics, magnetospheric physics, aeronomy, and ionospheric physics, as well as geophysics and power engineering. Geomagnetically Induced Currents from the Sun to the Power Grid is a practical introduction for researchers and practitioners that provides tools and techniques from across these disciplines. Volume highlights include: Analysis of causes of geomagnetic storms that create GICs Data and methods used to analyze and forecast GIC hazard GIC impacts on the infrastructure of the bulk power system Analysis techniques used in different areas of GIC research New methods to validate and predict GICs in transmission systems




Liquid Metal Magnetohydrodynamics


Book Description

Liquid metal MHO is within the scope of two series of international conferences. One is the International Congress on "MHD Power Generation", held every four years, which includes technical and economical aspects as well as scientific questions. The other if the Beer-Sheva Seminar on "MHO Flows and Turbulence", held every three years in Israel. In addition to these well established meetings, an IUTAM Symposium was previously organized in Cambridge (UK) in 1982 on "Metallurgical Applications of MHD" by the late Arthur Shercliff. It was focussed on a very specific subject developing radiply from the middle of the 1970's. The magnetic field was generally AC, including frequencies high enough for the skin-depth to be much smaller than the typical length scale of the liquide pool. And the development of new technologies, or the improvement of existing ones, was the main justification of most of the researches presented and discussed. Only two participants from Eastern countries attended this Symposium. By the middle of the 1980's we felt that on this very same topic ideas had reached much more maturity than in 1982. We also realized that a line of research on MHD flows related to fusion reactors (tokamaks) was developing significantly, with particular emphasis on flows at large interaction parameter.




MHD high performance demonstration experiment


Book Description

The assembly of the magnet continued, the generator channel assembly was completed, and burner testing was resumed. Channel assembly operations were completed approximately two weeks ahead of schedule, even though the operation was approximately four weeks behind schedule at the start of the quarter. At the close of the quarter, seven of the nine upper coil pancakes had been installed and the eighth pancake was in position for final placement on the magnet. Burner testing was resumed; however, only one firing with the traversing pressure probe and electrode test assembly installed was performed.




M.H.D. Power Generation


Book Description




POWER PLANT ENGINEERING


Book Description

This textbook has been designed for a one-semester course on Power Plant Engineering studied by both degree and diploma students of mechanical and electrical engineering. It effectively exposes the students to the basics of power generation involved in several energy conversion systems so that they gain comprehensive knowledge of the operation of various types of power plants in use today. After a brief introduction to energy fundamentals including the environmental impacts of power generation, the book acquaints the students with the working principles, design and operation of five conventional power plant systems, namely thermal, nuclear, hydroelectric, diesel and gas turbine. The economic factors of power generation with regard to estimation and prediction of load, plant design, plant operation, tariffs and so on, are discussed and illustrated with the help of several solved numerical problems. The generation of electric power using renewable energy sources such as solar, wind, biomass, geothermal, tidal, fuel cells, magneto hydrodynamic, thermoelectric and thermionic systems, is discussed elaborately. The book is interspersed with solved problems for a sound understanding of the various aspects of power plant engineering. The chapter-end questions are intended to provide the students with a thorough reinforcement of the concepts discussed.