Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting


Book Description

This book constitutes the refereed proceedings of the First International Workshop on Machine Learning and Medical Engineering for Cardiovasvular Healthcare, MLMECH 2019, and the International Joint Workshops on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For MLMECH 2019, 16 papers were accepted for publication from a total of 21 submissions. They focus on machine learning techniques and analyzing of ECG data in the diagnosis of heart diseases. CVII-STENT 2019 accepted all 8 submissiones for publication. They contain technological and scientific research concerning endovascular procedures.




Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting


Book Description

Computing and Visualization for Intravascular Imaging and Computer-Assisted Stenting presents imaging, treatment, and computed assisted technological techniques for diagnostic and intraoperative vascular imaging and stenting. These techniques offer increasingly useful information on vascular anatomy and function, and are poised to have a dramatic impact on the diagnosis, analysis, modeling, and treatment of vascular diseases. After setting out the technical and clinical challenges of vascular imaging and stenting, the book gives a concise overview of the basics before presenting state-of-the-art methods for solving these challenges. Readers will learn about the main challenges in endovascular procedures, along with new applications of intravascular imaging and the latest advances in computer assisted stenting. - Brings together scientific researchers, medical experts, and industry partners working in different anatomical regions - Presents an introduction to the clinical workflow and current challenges in endovascular Interventions - Provides a review of the state-of-the-art methodologies in endovascular imaging and their applications - Poses outstanding questions and discusses future research




Artificial Intelligence for Computational Modeling of the Heart


Book Description

Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications. - Presents recent advances in computational modeling of heart function and artificial intelligence technologies for subject-specific applications - Discusses AI-based technologies for robust anatomical modeling from medical images, data-driven reduction of multi-scale cardiac models, and estimations of physiological parameters from clinical data - Illustrates the technology through concrete clinical applications and discusses potential impacts and next steps needed for clinical translation




Machine Learning in Cardiovascular Medicine


Book Description

Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine. - Provides an overview of machine learning, both for a clinical and engineering audience - Summarize recent advances in both cardiovascular medicine and artificial intelligence - Discusses the advantages of using machine learning for outcomes research and image processing - Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach




Deep Learning and Convolutional Neural Networks for Medical Image Computing


Book Description

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.




Deep Learning for Medical Image Analysis


Book Description

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache




Deep Learning Applications in Medical Imaging


Book Description

Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.




Advances in Deep Generative Models for Medical Artificial Intelligence


Book Description

Generative Artificial Intelligence is rapidly advancing with many state-of-the-art performances on computer vision, speech processing, and natural language processing tasks. Generative adversarial networks and neural diffusion models can generate high-quality synthetic images of human faces, artworks, and coherent essays on different topics. Generative models are also transforming Medical Artificial Intelligence, given their potential to learn complex features from medical imaging and healthcare data. Hence, computer-aided diagnosis and healthcare are benefiting from Medical Artificial Intelligence and Generative Artificial Intelligence. This book presents the recent advances in generative models for Medical Artificial Intelligence. It covers many applications of generative models for medical image data, including volumetric medical image segmentation, data augmentation, MRI reconstruction, and modeling of spatiotemporal medical data. This book highlights the recent advancements in Generative Artificial Intelligence for medical and healthcare applications, using medical imaging and clinical and electronic health records data. Furthermore, the book comprehensively presents the concepts and applications of deep learning-based artificial intelligence methods, such as generative adversarial networks, convolutional neural networks, and vision transformers. It also presents a quantitative and qualitative analysis of data augmentation and synthesis performances of Generative Artificial Intelligence models. This book is the result of the collaborative efforts and hard work of many minds who contributed to it and illuminated the vast landscape of Medical Artificial Intelligence. The book is suitable for reading by computer science researchers, medical professionals, healthcare informatics, and medical imaging researchers interested in understanding the potential of artificial intelligence in healthcare. It serves as a compass for navigating the artificial intelligence-driven healthcare landscape.







Healthcare Big Data Analytics


Book Description

This book highlights how optimized big data applications can be used for patient monitoring and clinical diagnosis. In fact, IoT-based applications are data-driven and mostly employ modern optimization techniques. The book also explores challenges, opportunities, and future research directions, discussing the stages of data collection and pre-processing, as well as the associated challenges and issues in data handling and setup.