Machine Learning for Protein Subcellular Localization Prediction


Book Description

Comprehensively covers protein subcellular localization from single-label prediction to multi-label prediction, and includes prediction strategies for virus, plant, and eukaryote species. Three machine learning tools are introduced to improve classification refinement, feature extraction, and dimensionality reduction.




Proteomics Data Analysis


Book Description

This thorough book collects methods and strategies to analyze proteomics data. It is intended to describe how data obtained by gel-based or gel-free proteomics approaches can be inspected, organized, and interpreted to extrapolate biological information. Organized into four sections, the volume explores strategies to analyze proteomics data obtained by gel-based approaches, different data analysis approaches for gel-free proteomics experiments, bioinformatic tools for the interpretation of proteomics data to obtain biological significant information, as well as methods to integrate proteomics data with other omics datasets including genomics, transcriptomics, metabolomics, and other types of data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detailed implementation advice that will ensure high quality results in the lab. Authoritative and practical, Proteomics Data Analysis serves as an ideal guide to introduce researchers, both experienced and novice, to new tools and approaches for data analysis to encourage the further study of proteomics.







Machine Learning in Bioinformatics


Book Description

An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.




Proceedings of the International Conference on Big Data, IoT, and Machine Learning


Book Description

This book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Big Data, IoT and Machine Learning (BIM 2021), held in Cox’s Bazar, Bangladesh, during 23–25 September 2021. The book covers research papers in the field of big data, IoT and machine learning. The book will be helpful for active researchers and practitioners in the field.




The Plant Cell Wall


Book Description

Enzymes, lignin, proteins, cellulose, pectin, kinase.




Prediction of Protein Structure and the Principles of Protein Conformation


Book Description

The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.







The Practical Bioinformatician


Book Description

Computer scientists have increasingly been enlisted as "bioinformaticians" to assist molecular biologists in their research. This book is a practical introduction to bioinformatics for these computer scientists. The chapters are in-depth discussions by expert bioinformaticians on both general techniques and specific approaches to a range of selected bioinformatics problems. The book is organized into clusters of chapters on the following topics: - Overview of modern molecular biology and a broad spectrum of techniques from computer science -- data mining, machine learning, mathematical modeling, sequence alignment, data integration, workflow development, etc. - In-depth discussion of computational recognition of functional and regulatory sites in DNA sequences. - Incisive discussion of computational prediction of secondary structure of RNA sequences. - Overview of computational prediction of protein cellular localization, and selected discussions of inference of protein function. - Overview of methods for discovering protein-protein interactions. - Detailed discussion of approaches to gene expression analysis for the diagnosis of diseases, the treatment of diseases, and the understanding of gene functions. - Case studies on analysis of phylogenies, functional annotation of proteins, construction of purposebuilt integrated biological databases, and development of workflows underlying the large-scale-effort gene discovery. - Written in a practical, in-depth tutorial style - Covers a broad range of bioinformatics topics and of techniques used in bioinformatics - Comprehensive overviews of the development of various approaches in a number of selectedtopics - In-depth exposition of a number of important topics - Contributions by prominent researchers: Vladimir Bajic, Ming Li, Kenta Nakai, Limsoon Wong, Cathy Wu, etc. - Extensive, integrated references to background liter




Biomedical Data Mining for Information Retrieval


Book Description

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.