Deep Learning for Robot Perception and Cognition


Book Description

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis




Cognitive Computing for Human-Robot Interaction


Book Description

Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario




KI 2018: Advances in Artificial Intelligence


Book Description

This book constitutes the refereed proceedings of the 41st German Conference on Artificial Intelligence, KI 2018, held in Berlin, Germany, in September 2018. The 20 full and 14 short papers presented in this volume were carefully reviewed and selected from 65 submissions. The book also contains one keynote talk in full paper length. The papers were organized in topical sections named: reasoning; multi-agent systems; robotics; learning; planning; neural networks; search; belief revision; context aware systems; and cognitive approach.




Artificial Intelligence Applications and Innovations


Book Description

This book constitutes the refereed proceedings of five International Workshops held as parallel events of the 18th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2022, virtually and in Hersonissos, Crete, Greece, in June 2022: the 11th Mining Humanistic Data Workshop (MHDW 2022); the 7th 5G-Putting Intelligence to the Network Edge Workshop (5G-PINE 2022); the 1st workshop on AI in Energy, Building and Micro-Grids (AIBMG 2022); the 1st Workshop/Special Session on Machine Learning and Big Data in Health Care (ML@HC 2022); and the 2nd Workshop on Artificial Intelligence in Biomedical Engineering and Informatics (AIBEI 2022). The 35 full papers presented at these workshops were carefully reviewed and selected from 74 submissions.




Conversational Dialogue Systems for the Next Decade


Book Description

This book compiles and presents a synopsis on current global research efforts to push forward the state of the art in dialogue technologies, including advances to the classical problems of dialogue management, language generation, question answering, human–robot interaction, chatbots design and evaluation, as well as topics related to the human nature of the conversational phenomena such as humour, social context, specific applications for e-health, understanding, and awareness




Applied AI and Humanoid Robotics for the Ultra-Smart Cyberspace


Book Description

In the rapidly transforming landscape of fast-paced technology evolution, the fusion of artificial intelligence (AI) and humanoid robotics is set to redefine academia as we know it. From advancements in AI, humanoid robotics, nano and bio technologies, and smart medicine, the vision of an ultra-smart cyberspace is becoming a tangible reality. Yet, amid this transformative potential, scholars face a pressing challenge – how to navigate the complexities of these cutting-edge technologies to drive impactful research and innovation. Applied AI and Humanoid Robotics for the Ultra-Smart Cyberspace beckons scholars to harness the full potential of applied AI and humanoid robotics in academia. This book illuminates the most effective applications of these technologies across various disciplines such as industry, business, health, government, military, and critical cyber infrastructure. Through rigorously peer-reviewed chapters, the book addresses key issues, provides technical solutions, and guides future research directions, fostering a collaborative bridge between academia and industry.




Shaping the Future of Automation With Cloud-Enhanced Robotics


Book Description

In a world where automation is quickly becoming a standard, a significant challenge arises – the need for robots to overcome their inherent limitations in processing power and storage. This bottleneck restricts their potential for innovation and collaboration, hindering the realization of true autonomous capabilities. The burgeoning field of Cloud Robotics promises a revolutionary solution by seamlessly integrating robots with cloud-based technologies. This integration empowers robots to offload computation tasks, tap into vast data resources, and engage in real-time collaboration with their mechanical counterparts. Existing literature often falls short of providing a holistic understanding of the complex interplay between robotics and cloud computing. Researchers, academics, and industry professionals find themselves grappling with fragmented insights, hindering their ability to harness the full potential of cloud-enhanced robotics. The lack of a centralized resource leaves a void, impeding progress and innovation in this groundbreaking field. Without a roadmap to navigate the challenges and opportunities presented by cloud robotics, stakeholders risk being left behind in an era where interdisciplinary collaboration is paramount. Enter Shaping the Future of Automation With Cloud-Enhanced Robotics, a beacon of knowledge designed specifically for academics, researchers, and industry professionals seeking to unlock the transformative power of cloud robotics. From fundamental principles to advanced applications, each chapter meticulously unravels the intricacies of cloud infrastructure, communication protocols, data management, human-robot interaction, and more. By addressing challenges and proposing solutions, this book not only disseminates recent advancements but also equips readers with actionable insights. Real-world examples and case studies illuminate the practical applications and benefits of cloud-enhanced robotics, making it an indispensable guide for professionals aiming to implement these innovations in their operations.




Advanced Machine Learning


Book Description

DESCRIPTION Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field. Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms. After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms. KEY FEATURES ● Basic understanding of machine learning algorithms via MATLAB, R, and Python. ● Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies. ● Adding futuristic technologies related to machine learning and deep learning. WHAT YOU WILL LEARN ● Ability to tackle complex machine learning problems. ● Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data. ● Efficient data analysis for real-time data will be understood by researchers/ students. ● Using data analysis in near future topics and cutting-edge technologies. WHO THIS BOOK IS FOR This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Statistical Analysis 3. Linear Regression 4. Logistic Regression 5. Decision Trees 6. Random Forest 7. Rule-Based Classifiers 8. Naïve Bayesian Classifier 9. K-Nearest Neighbors Classifiers 10. Support Vector Machine 11. K-Means Clustering 12. Dimensionality Reduction 13. Association Rules Mining and FP Growth 14. Reinforcement Learning 15. Applications of ML Algorithms 16. Applications of Deep Learning 17. Advance Topics and Future Directions




Progress in Automation, Robotics and Measuring Techniques


Book Description

This book presents recent progresses in control, automation, robotics and measuring techniques. It includes contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.