Applications of Artificial Intelligence in Additive Manufacturing


Book Description

"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--




Machine Learning Modeling with Application to Laser Powder Bed Fusion Additive Manufacturing Process


Book Description

Big data plays an important role in the fourth industrial revolution, which requires engineersand computers to fully utilize data to make smart decisions to optimize industrial processes. In the additive manufacturing (AM) industry, laser powder bed fusion (LPBF) and direct metal laser solidification (DMLS) have been receiving increasing interest in research because of their outstanding performance in producing mechanical parts with ultra-high precision and variable geometries. However, due to the thermal and mechanical complexity of these processes, printing failures are often encountered, resulting in defective parts and even destructive damage to the printing platform. For example, heating anomalies can result in thermal and mechanical stress on the building part and eventually lead to physical problems such as keyholing and lack of fusion. Many of the aforementioned process errors occur during the layer-to-layer printing process, which makes in-situ process monitoring and quality control extremely important. Although in-situ sensors are extensively developed to investigate and record information from the real-time printing process, the lack of efficient in-situ defect detection techniques specialized for AM processes makes real-time process monitoring and data analysis extremely difficult. Therefore, to help process engineers analyze sensor information and efficiently filter monitoring data for transport and storage, machine learning and data processing algorithms are often implemented. These algorithms integrate the functionality of automated data processing, transferring, and analytics. In particular, sensor data often takes the form of images, and thus, a prominent approach to conducting image analytics is through the use of convolutional neural networks (CNN). Nevertheless, the industrial utilization of machine learning methods often encounters problems such as limited and biased training datasets. Hence, simulation methods, such as the finite-element method (FEM), are used to augment and improve the training of the deep learning process monitoring algorithm. Motivated by the above considerations, this dissertation presents the use of machine learning techniques in process monitoring, data analytics, and data transfer for additive manufacturing processes. The background, motivation, and organization of this dissertation are first presented in the Introduction chapter. Then, the use of FEM to model and replicate in-situ sensor data is presented, followed by the use of machine learning techniques to conduct real-time process monitoring trained from a mixture of experimental and replicated sensor image data. In particular, a cross-validation algorithm is developed through the exploitation of different sensor advantages and is integrated into the machine learning-assisted process monitoring algorithm. Next, an application of machine learning (ML) to non-image sensor data is presented as a neural network model that is developed to estimate in-situ powder thickness to account for recoater arm interactions. Subsequently, an integrated AM smart manufacturing framework is proposed which connects the different manufacturing hierarchies, particularly at the local machine, factory, and cloud level. Finally, in addition to the AM industry, the use of machine learning, specifically neural networks, in model predictive control (MPC) for dynamic nonlinear processes is reviewed and discussed.




2018 17th ACM IEEE International Conference on Information Processing in Sensor Networks (IPSN)


Book Description

IPSN (part of CPSWEEK) brings together researchers from academia, industry, and government to present and discuss recent advances in both theoretical and experimental research Its scope includes signal and image processing, information and coding theory, databases and information management, distributed algorithms, networks and protocols, wireless communications, collaborative objects and the Internet of Things, machine learning, mobile and social sensing, and embedded systems design Of special interest are contributions at the confluence of multiple of these areas




The EM Algorithm and Extensions


Book Description

The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.




Additive Manufacturing Applications for Metals and Composites


Book Description

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.




Laser Additive Manufacturing


Book Description

Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. Provides a comprehensive one-volume overview of advances in laser additive manufacturing Presents detailed coverage of the latest techniques used for laser additive manufacturing Reviews both established and emerging areas of application




Metal Additive Manufacturing


Book Description

METAL ADDITIVE MANUFACTURING A comprehensive review of additive manufacturing processes for metallic structures Additive Manufacturing (AM)—also commonly referred to as 3D printing—builds three-dimensional objects by adding materials layer by layer. Recent years have seen unprecedented investment in additive manufacturing research and development by governments and corporations worldwide. This technology has the potential to replace many conventional manufacturing processes, enable the development of new industry practices, and transform the entire manufacturing enterprise. Metal Additive Manufacturing provides an up-to-date review of all essential physics of metal additive manufacturing techniques with emphasis on both laser-based and non-laser-based additive manufacturing processes. This comprehensive volume covers fundamental processes and equipment, governing physics and modelling, design and topology optimization, and more. The text adresses introductory, intermediate, and advanced topics ranging from basic additive manufacturing process classification to practical and material design aspects of additive manufacturability. Written by a panel of expert authors in the field, this authoritative resource: Provides a thorough analysis of AM processes and their theoretical foundations Explains the classification, advantages, and applications of AM processes Describes the equipment required for different AM processes for metallic structures, including laser technologies, positioning devices, feeder and spreader mechanisms, and CAD software Discusses the opportunities, challenges, and current and emerging trends within the field Covers practical considerations, including design for AM, safety, quality assurance, automation, and real-time control of AM processes Includes illustrative cases studies and numerous figures and tables Featuring material drawn from the lead author’s research and professional experience on laser additive manufacturing, Metal Additive Manufacturing is an important source for manufacturing professionals, research and development engineers in the additive industry, and students and researchers involved in mechanical, mechatronics, automatic control, and materials engineering and science.




Thermo-Mechanical Modeling of Additive Manufacturing


Book Description

Thermo-mechanical Modeling of Additive Manufacturing provides the background, methodology and description of modeling techniques to enable the reader to perform their own accurate and reliable simulations of any additive process. Part I provides an in depth introduction to the fundamentals of additive manufacturing modeling, a description of adaptive mesh strategies, a thorough description of thermal losses and a discussion of residual stress and distortion. Part II applies the engineering fundamentals to direct energy deposition processes including laser cladding, LENS builds, large electron beam parts and an exploration of residual stress and deformation mitigation strategies. Part III concerns the thermo-mechanical modeling of powder bed processes with a description of the heat input model, classical thermo-mechanical modeling, and part scale modeling. The book serves as an essential reference for engineers and technicians in both industry and academia, performing both research and full-scale production. Additive manufacturing processes are revolutionizing production throughout industry. These technologies enable the cost-effective manufacture of small lot parts, rapid repair of damaged components and construction of previously impossible-to-produce geometries. However, the large thermal gradients inherent in these processes incur large residual stresses and mechanical distortion, which can push the finished component out of engineering tolerance. Costly trial-and-error methods are commonly used for failure mitigation. Finite element modeling provides a compelling alternative, allowing for the prediction of residual stresses and distortion, and thus a tool to investigate methods of failure mitigation prior to building. - Provides understanding of important components in the finite element modeling of additive manufacturing processes necessary to obtain accurate results - Offers a deeper understanding of how the thermal gradients inherent in additive manufacturing induce distortion and residual stresses, and how to mitigate these undesirable phenomena - Includes a set of strategies for the modeler to improve computational efficiency when simulating various additive manufacturing processes - Serves as an essential reference for engineers and technicians in both industry and academia




Machine Learning for Powder-Based Metal Additive Manufacturing


Book Description

Machine Learning for Powder-based Metal Additive Manufacturing outlines machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs. The book combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications. The book covers ML for design in AM, ML for materials development and intelligent monitoring in metal AM, both geometrical deviation and physics informed machine learning modeling, as well as data-driven cost estimation by ML. In addition, optimization for slicing and orientation, ML to create models of materials for AM processes, ML prediction for better mechanical and microstructure prediction, and feature extraction by sensing data are all covered, and each chapter includes a case study. - Covers machine learning (ML) methods for additive manufacturing (AM) of metals that will improve product quality, optimize manufacturing processes, and reduce costs - Combines ML and AM methods to develop intelligent models that train AM techniques in pre-processing, process optimization, and post-processing for optimized microstructure, tensile and fatigue properties, and biocompatibility for various applications - Discusses algorithm development of ML for metal AM, metal AM process modeling and optimization, mathematical and simulation studies of metal AM, and pre- and post-processing smart methods for metal AM




Modeling and Optimization in Manufacturing


Book Description

Discover the state-of-the-art in multiscale modeling and optimization in manufacturing from two leading voices in the field Modeling and Optimization in Manufacturing delivers a comprehensive approach to various manufacturing processes and shows readers how multiscale modeling and optimization processes help improve upon them. The book elaborates on the foundations and applications of computational modeling and optimization processes, as well as recent developments in the field. It offers discussions of manufacturing processes, including forming, machining, casting, joining, coating, and additive manufacturing, and how computer simulations have influenced their development. Examples for each category of manufacturing are provided in the text, and industrial applications are described for the reader. The distinguished authors also provide an insightful perspective on likely future trends and developments in manufacturing modeling and optimization, including the use of large materials databases and machine learning. Readers will also benefit from the inclusion of: A thorough introduction to the origins of manufacturing, the history of traditional and advanced manufacturing, and recent progress in manufacturing An exploration of advanced manufacturing and the environmental impact and significance of manufacturing Practical discussions of the economic importance of advanced manufacturing An examination of the sustainability of advanced manufacturing, and developing and future trends in manufacturing Perfect for materials scientists, mechanical engineers, and process engineers, Modeling and Optimization in Manufacturing will also earn a place in the libraries of engineering scientists in industries seeking a one-stop reference on multiscale modeling and optimization in manufacturing.