Machine Learning Quick Reference


Book Description

Your hands-on reference guide to developing, training, and optimizing your machine learning models Key FeaturesYour guide to learning efficient machine learning processes from scratchExplore expert techniques and hacks for a variety of machine learning conceptsWrite effective code in R, Python, Scala, and Spark to solve all your machine learning problemsBook Description Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference. What you will learnGet a quick rundown of model selection, statistical modeling, and cross-validationChoose the best machine learning algorithm to solve your problemExplore kernel learning, neural networks, and time-series analysisTrain deep learning models and optimize them for maximum performanceBriefly cover Bayesian techniques and sentiment analysis in your NLP solutionImplement probabilistic graphical models and causal inferencesMeasure and optimize the performance of your machine learning modelsWho this book is for If you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.




Deep Learning Quick Reference


Book Description

Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book Description Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is for If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.




Machine Learning and Its Application


Book Description

Machine Learning and Its Application: A Quick Guide for Beginners aims to cover most of the core topics required for study in machine learning curricula included in university and college courses. The textbook introduces readers to central concepts in machine learning and artificial intelligence, which include the types of machine learning algorithms and the statistical knowledge required for devising relevant computer algorithms. The book also covers advanced topics such as deep learning and feature engineering. Key features: - 8 organized chapters on core concepts of machine learning for learners - Accessible text for beginners unfamiliar with complex mathematical concepts - Introductory topics are included, including supervised learning, unsupervised learning, reinforcement learning and predictive statistics - Advanced topics such as deep learning and feature engineering provide additional information - Introduces readers to python programming with examples of code for understanding and practice - Includes a summary of the text and a dedicated section for references Machine Learning and Its Application: A Quick Guide for Beginners is an essential book for students and learners who want to understand the basics of machine learning and equip themselves with the knowledge to write algorithms for intelligent data processing applications.




Machine Learning Pocket Reference


Book Description

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines




Machine Learning Algorithms


Book Description

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.




Machine Learning with scikit-learn Quick Start Guide


Book Description

Deploy supervised and unsupervised machine learning algorithms using scikit-learn to perform classification, regression, and clustering. Key FeaturesBuild your first machine learning model using scikit-learnTrain supervised and unsupervised models using popular techniques such as classification, regression and clusteringUnderstand how scikit-learn can be applied to different types of machine learning problemsBook Description Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions. What you will learnLearn how to work with all scikit-learn's machine learning algorithmsInstall and set up scikit-learn to build your first machine learning modelEmploy Unsupervised Machine Learning Algorithms to cluster unlabelled data into groupsPerform classification and regression machine learningUse an effective pipeline to build a machine learning project from scratchWho this book is for This book is for aspiring machine learning developers who want to get started with scikit-learn. Intermediate knowledge of Python programming and some fundamental knowledge of linear algebra and probability will help.




Human-in-the-Loop Machine Learning


Book Description

Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.




Hands-On Machine Learning with R


Book Description

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.




Introducing Machine Learning


Book Description

Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library




Foundations of Machine Learning, second edition


Book Description

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.