Computer Processing of Remotely-Sensed Images


Book Description

Remotely-sensed images of the Earth provide information about the geographical distribution of natural and cultural features, as well as a record of changes in environmental conditions over time. This text offers technical guidance to those involved in processing and classifying such data.




Remote Sensing Digital Image Analysis


Book Description

With the widespread availability of satellite and aircraft remote sensing image data in digital form, and the ready access most remote sensing practitioners have to computing systems for image interpretation, there is a need to draw together the range of digital image processing procedures and methodologies commonly used in this field into a single treatment. It is the intention of this book to provide such a function, at a level meaningful to the non-specialist digital image analyst, but in sufficient detail that algorithm limitations, alternative procedures and current trends can be appreciated. Often the applications specialist in remote sensing wishing to make use of digital processing procedures has had to depend upon either the mathematically detailed treatments of image processing found in the electrical engineering and computer science literature, or the sometimes necessarily superficial treatments given in general texts on remote sensing. This book seeks to redress that situation. Both image enhancement and classification techniques are covered making the material relevant in those applications in which photointerpretation is used for information extraction and in those wherein information is obtained by classification.




Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data


Book Description

The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.




Remote Sensing of Forest Environments


Book Description

Remote Sensing of Forest Environments: Concepts and Case Studies is an edited volume intended to provide readers with a state-of-the-art synopsis of the current methods and applied applications employed in remote sensing the world's forests. The contributing authors have sought to illustrate and deepen our understanding of remote sensing of forests, providing new insights and indicating opportunities that are created when forests and forest practices are considered in concert with the evolving paradigm of remote sensing science. Following background and methods sections, this book introduces a series of case studies that exemplify the ways in which remotely sensed data are operationally used, as an element of the decision-making process, and in the scientific study of forests. Remote Sensing of Forest Environments: Concepts and Case Studies is designed to meet the needs of a professional audience composed of both practitioners and researchers. This book is also suitable as a secondary text for graduate-level students in Forestry, Environmental Science, Geography, Engineering, and Computer Science.




Computer Processing of Remotely-Sensed Images


Book Description

Remotely-sensed images of the Earth's surface provide a valuable source of information about the geographical distribution and properties of natural and cultural features. This fully revised and updated edition of a highly regarded textbook deals with the mechanics of processing remotely-senses images. Presented in an accessible manner, the book covers a wide range of image processing and pattern recognition techniques. Features include: New topics on LiDAR data processing, SAR interferometry, the analysis of imaging spectrometer image sets and the use of the wavelet transform. An accompanying CD-ROM with: updated MIPS software, including modules for standard procedures such as image display, filtering, image transforms, graph plotting, import of data from a range of sensors. A set of exercises, including data sets, illustrating the application of discussed methods using the MIPS software. An extensive list of WWW resources including colour illustrations for easy download. For further information, including exercises and latest software information visit the Author's Website at: http://homepage.ntlworld.com/paul.mather/ComputerProcessing3/




Remote Sensing


Book Description

This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.




Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing


Book Description

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.







Big Data Analytics for Satellite Image Processing and Remote Sensing


Book Description

The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.