Handbook of Plant Nutrition


Book Description

The burgeoning demand on the world food supply, coupled with concern over the use of chemical fertilizers, has led to an accelerated interest in the practice of precision agriculture. This practice involves the careful control and monitoring of plant nutrition to maximize the rate of growth and yield of crops, as well as their nutritional value.




Genomics and Breeding for Climate-Resilient Crops


Book Description

Climate change is expected to have a drastic impact on agronomic conditions including temperature, precipitation, soil nutrients, and the incidence of disease pests, to name a few. To face this looming threat, significant progress in developing new breeding strategies has been made over the last few decades. The first volume of Genomics and Breeding for Climate-Resilient Crops presents the basic concepts and strategies for developing climate-resilient crop varieties. Topics covered include: conservation, evaluation and utilization of biodiversity; identification of traits, genes and crops of the future; genomic and molecular tools; genetic engineering; participatory and evolutionary breeding; bioinformatics tools to support breeding; funding and networking support; and intellectual property, regulatory issues, social and political dimensions. ​







Mineral Nutrition of Higher Plants


Book Description

This text presents the principles of mineral nutrition in the light of current advances. For this second edition more emphasis has been placed on root water relations and functions of micronutrients as well as external and internal factors on root growth and the root-soil interface.







Fertilizer Abstracts


Book Description




Plant Physiology, Development and Metabolism


Book Description

This textbook is second edition of popular textbook of plant physiology and metabolism. The first edition of this book gained noteworthy acceptance (more than 4.9 Million downloads) among graduate and masters level students and faculty world over, with many Universities recommending it as a preferred reading in their syllabi. The second edition provides up to date and latest information on all the topics covered while also including the basic concepts. The text is supported with clear, easy to understand Figures, Tables, Box items, summaries, perspectives, thought-provoking multiple-choice questions, latest references for further reading, glossary and a detailed subject index. Authors have also added a number of key concepts, discoveries in the form of boxed- items in each chapter. Plant physiology deals with understanding the various processes, functioning, growth, development and survival of plants in normal and stressful conditions. The study involves analysis of the above-stated processes at molecular, sub-cellular, cellular, tissue and plant level in relation with its surrounding environment. Plant physiology is an experimental science, and its concepts are very rapidly changing through applications from chemical biology, cytochemical, fluorometric, biochemical and molecular techniques, and metabolomic and proteomic analysis. Consequently, this branch of modern plant biology has experienced significant generation of new information in most areas. The newer concepts so derived are being also rapidly put into applications in crop physiology. Novel molecules, such nanourea, nitric oxide, gaseous signalling molecules like hydrogen sulphide, are rapidly finding significant applications among crop plants. This textbook, therefore, brings forth an inclusive coverage of the field contained in 35 chapters, divided into five major units. It serves as essential reading material for post-graduate and undergraduate students of botany, plant sciences, plant physiology, agriculture, forestry, ecology, soil science, and environmental sciences. This textbook is also of interest to teachers, researchers, scientists, and policymakers.




Manganese in Soils and Plants


Book Description

Sixty years ago at the Waite Agricultural Research Institute, G. Samuel, a plant pathologist, and C. S. Piper, a chemist, published their conclusion that the cause of roadside take-all, a disease of oats, was manganese deficiency. This report, together with the concurrent and independent studies of W. M. Carne in Western Australia were the first records of manganese deficiency in Australia and came only six years after McHargue's paper which is generally accepted as the final proof of the essentiality of this element. There must have been a few doubts for some people at the time, however, as the CAB publication, 'The Minor Elements of the Soil' (1940) expressed the view that further evidence to this effect was provided by Samuel and Piper. Their historic contributions are recognised by the International Symposium on Manganese in Soils and Plants as it meets on the site of their early labours to celebrate the 60th anniversary. This year Australians also acknowledge 200 years of European settlement in this country and so the Symposium is both a Bicentennial and a diamond jubilee event which recognises the impact of trace elements on agricultural development in Australia. In a broader sense, a symposium such as this celebrates, as it reviews, the efforts of all who over the ages have contributed to our knowledge of manganese in soils and plants.