Astrophysical Magnetic Fields


Book Description

This self-contained introduction to astrophysical magnetic fields provides a comprehensive review of the current state of the field and a critical discussion of the latest research. Its emphasis on results that are likely to form the basis for future progress benefits a broad audience of advanced students and active researchers.




Astrophysical Magnetic Fields


Book Description

Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.




Astrophysical Magnetic Fields


Book Description

Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.







Solar Magnetic Fields


Book Description

Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related processes be explored in detail. While several excellent textbooks have established a diagnostic foundation for exploring the physics of unmagnetized stellar atmospheres through spectral analysis, no corresponding treatise for magnetized stellar atmospheres has been available. The present monograph fills this gap. The theoretical foundation for the diagnostics of stellar magnetism is developed from first principles in a comprehensive way, both within the frameworks of classical physics and quantum field theory, together with a presentation of the various solar applications. This textbook can serve as an introduction to solar and stellar magnetism for astronomers and physicists at the graduate or advanced undergraduate level and will also become a resource book for more senior scientists with a general interest in cosmic magnetic fields.




Atoms in Strong Magnetic Fields


Book Description

A clear and accessible introduction to quantum mechanical methods used to calculate properties of atoms exposed to strong magnetic fields in both laboratory and stellar environments, with the emphasis on hydrogen and helium and their isoelectronic sequences. The results of the detailed calculations are listed in tables, making it a useful handbook for astrophysicists and atomic physicists alike.




Magnetic Fields of Celestial Bodies


Book Description

Magnetism is one of the basic properties of matter. Mankind has trav elled a long road in discovering and utilizing magnetism, and in this respect the ancient Chinese people have made outstanding contribu tions. In the book 'Lu's Spring and Autumn', written near the end of the Warring States Period, i. e. in the third century B. C. , there is a statement on the "attraction of iron by lodestones". So at that time it was known that magnets can attract ferromagnetic material. At the be ginning ofthe first century A. D. , viz. in the early years ofthe East Hang Dynasty, the famous scholar Wang Chong wrote in his masterpiece 'Len Hen' that the handle of a magnetic dipper pointed to the south. It was thus discovered at the time that magnets can point to the poles of the geomagnetic field. At the beginning of the twelfth century, during the reign of Emperor Hui of the Sung Dynasty, in the two books written by Zhu Yo and Xu Jin, respectively, there are descriptions of the com pass used in navigation. This tells us that the application of compasses was rather widespread at that time. The distinguished scientist Sen Go (1031-1085) discovered the declination of the terrestrial magnetic field. This is four hundred and more years earlier than its discovery by Christopher Columbus in 1492 during his voyage across the Atlantic Ocean. Such facts as these manifest the important contributions of ancient China to global civilization.




Magnetic Fields in the Solar System


Book Description

This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.




The Magnetic Universe


Book Description

Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial in the formation of the stars, and discuss promising experiments currently being designed to study some of the relevant physics in the laboratory. This interdisciplinary approach makes the book appealing to a wide audience in physics, astrophysics and geophysics.




Galactic and Intergalactic Magnetic Fields


Book Description

This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.