Magnetic Hysteresis


Book Description

Understanding magnetic hysteresis is vitally important to the development of the science of magnetism as a whole and to the advancement of practical magnetic device applications. Magnetic Hysteresis, by acclaimed expert Edward Della Torre, presents a clear explanation of the connection between physical principles and phenomenological hysteresis. This comprehensive book offers a lucid analysis that enables the reader to save valuable time by reducing trial-and-error design. Dr. Della Torre uses physical principles to modify Preisach modeling and to describe the complex behavior of magnetic media. While Pretsach modeling is a useful mathematical tool, its congruency and deletion properties present limitations to accurate descriptions of magnetic materials. Step-by-step, this book describes the modifications that can overcome these limitations. Special attention is given to the use of feedback around a Preisach transducer to remove the congruency restriction, and to the use of accommodation and aftereffect models to remove the deletion restriction. Magnetic state selection rules are introduced to couple scalar Preisach models to form a vector model. Magnetic Hysteresis is indispensable reading for engineers, physicists, and materials scientists who want to gain a better understanding of hysteresis losses and create more energy-efficient motor designs.




Hysteresis in Magnetism


Book Description

This book provides a comprehensive treatment of the physics of hysteresis in magnetism and of the mathematical tools used to describe it. Hysteresis in Magnetism discusses from a unified viewpoint the relationsof hysteresis to Maxwells equations, equilibrium and non-equilibrium thermodynamics, non-linear system dynamics, micromagnetics, and domain theory. These aspects are then applied to the interpretation of magnetization reversal mechanisms: coherent rotation and switching in magnetic particles, stochastic domain wall motion and the Barkhausen effect, coercivity mechanisms and magnetic viscosity, rate-dependent hysteresis and eddy-current losses. The book emphasizes the connection between basic physical ideas and phenomenological models of interest to applications, and, in particular, to the conceptual path going from Maxwells equations and thermodynamics to micromagnetics and to Preisach hysteresis modeling. - The reader will get insight into the importance and role of hysteresis in magnetism; In particular, he will learn: - which are the fingerprints of hysteresis in magnetism - which are the situations in which hysteresis may appear - how to describe mathematically these situations - how to apply these descriptions to magnetic materials - how to interpret and predict magnetic hysteresis phenomena observed experimentally




Magnetic Hysteresis in Novel Magnetic Materials


Book Description

A detailed presentation of the physics of the various hysteresis models that are currently used to explain the magnetization reversal process, including coherent and incoherent magnetization processes, micromagnetism and its application in thin films, multilayers, nanowires, particles and bulk magnets, domain wall pinning and domain wall dynamics, and Preisach modelling. Some of the faulty concepts and interpretations that still exist in the literature are rectified. Magnetic imaging techniques are reviewed, including TEM, SEM, magnetic force microscopy, and optical microscopy. Temperature, field and angular dependence of coercivity, magnetic interactions and magnetic phenomena are reviewed and their effect on magnetic hysteresis is discussed. The magnetic properties of novel materials are discussed, including nanoparticles, nanocrystalline granular solids, particulate media, thin films, and bulk magnets. Finally, present and future applications of novel materials are presented, including magnetic and magneto-optic recording media, magneto-electronics, sensors, magnetic circuit design, and novel structures created from rigid, high-energy permanent magnets.




Magnetism and Magnetic Materials


Book Description

An essential textbook for graduate courses on magnetism and an important source of practical reference data.




Magnetic Materials


Book Description

Magnetic Materials is an excellent introduction to the basics of magnetism, magnetic materials and their applications in modern device technologies. Retaining the concise style of the original, this edition has been thoroughly revised to address significant developments in the field, including the improved understanding of basic magnetic phenomena, new classes of materials, and changes to device paradigms. With homework problems, solutions to selected problems and a detailed list of references, Magnetic Materials continues to be the ideal book for a one-semester course and as a self-study guide for researchers new to the field. New to this edition: • Entirely new chapters on Exchange Bias Coupling, Multiferroic and Magnetoelectric Materials, Magnetic Insulators • Revised throughout, with substantial updates to the chapters on Magnetic Recording and Magnetic Semiconductors, incorporating the latest advances in the field • New example problems with worked solutions




Modern Permanent Magnets


Book Description

Modern Permanent Magnets provides an update on the status and recent technical developments that have occurred in the various families of permanent magnets produced today. The book gives an overview of the key advances of permanent magnet materials that have occurred in the last twenty years. Sections cover the history of permanent magnets, their fundamental properties, an overview of the important families of permanent magnets, coatings used to protect permanent magnets and the various tests used to confirm specifications are discussed. Finally, the major applications for each family of permanent magnets and the size of the market is provided. The book also includes an Appendix that provides a Glossary of Magnetic Terms to assist the readers in better understanding the technical terms used in other chapters. This book is an ideal resource for materials scientists and engineers working in academia and industry R&D. - Provides an in-depth overview of all of the important families of permanent magnets produced today - Includes background information on the fundamental properties of permanent magnets, major applications of each family of permanent magnets, and advances in coatings and coating technology - Reviews the fundamentals of permanent magnet design




Magnetic Domains


Book Description

This book offers systematic and up-to-date treatment of the whole area of magnetic domains. It contains many contributions that have not been published before. The comprehensive survey of this important area gives a good introduction to students and is also interesting to researchers.




Magnetic Material for Motor Drive Systems


Book Description

This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.




Novel Functional Magnetic Materials


Book Description

This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect. Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdisciplinary and forward-looking approach will benefit the scientific community, particularly researchers and advanced graduate students working in the field of advanced magnetic materials, composites, and high-performance sensor and microwave devices.




Introduction to Magnetic Materials


Book Description

Introduction to Magnetic Materials, 2nd Edition covers the basics of magnetic quantities, magnetic devices, and materials used in practice. While retaining much of the original, this revision now covers SQUID and alternating gradient magnetometers, magnetic force microscope, Kerr effect, amorphous alloys, rare-earth magnets, SI Units alongside cgs units, and other up-to-date topics. In addition, the authors have added an entirely new chapter on information materials. The text presents materials at the practical rather than theoretical level, allowing for a physical, quantitative, measurement-based understanding of magnetism among readers, be they professional engineers or graduate-level students.