Magnetic Proximity Effect Inside Heterostructures of 2D Materials and Thin Films Adjacent to Magnetic Insulators


Book Description

The magnetic proximity effect (MPE) has generated a lot of interest recently due to its ability to introduce magnetic order into otherwise non-magnetic systems. It can be realized in 2D material stacks as well as inside 3D material thin film heterostructure. The work in this thesis explores MPE inside a variety of heterostructures using multiple measurement techniques. It demonstrates the first realization of MPE inside a thin film of Pt from a ferrimagnetic insulator CoFe2O4. Next, it experimentally demonstrates a novel growth method for synthesizing high quality thin films of topological Dirac semimetal Na3Bi on Al2O3 substrate, and further extends this growth method to synthesize the first topological Dirac semimetal/magnetic insulator heterostructure of Na3Bi/CoFe2O4. Finally, it lays the groundwork for ambitious studies of MPE inside 2D material/magnetic insulator heterostructures using angle-resolved photoemission spectroscopy. This is accomplished by a new process of transferring flakes of 2D materials on top of freshly deposited thin films while inside an ultra-high vacuum environment.




Theoretical and Experimental Study of Magnetic Proximity Effect


Book Description

Magnetic proximity effect in a heterostructure, which consists of a semiconductor thin film or a 2D material sheet and a ferromagnetic insulator film, has a great potential in spintronics applications. However, a complete study of magnetic proximity effect has been highly challenging. We theoretically and experimentally investigate the proximity-induced exchange splitting in a semiconductor thin film or a 2D material sheet adjacent to a ferromagnetic insulator layer. Theoretical calculations indicate that proximity-induced exchange splitting can largely enhance the performance of spintronic applications. Photoluminescence experiment shows that the spin splitting in the semiconductor thin film induced by the proximity effect can be directly controlled by the magnetization of the ferromagnetic insulator layers. Such a sandwich structure not only serves as a platform to clarify the magnetic proximity effect at ferromagnetic insulator/semiconductor interfaces but also provides insights into designing spin-filter superlattices which can generate fully spin-polarized currents. The unit cell of the ferromagnetic superlattice is a ferromagnetic insulator/semiconductor bilayer. These ferromagnetic insulator layers create periodically arranged spin-dependent barriers, with semiconductor layers as quantum wells. In Chapter 2, we will cover the band structure of the ferromagnetic superlattice, and we will use standard approaches to study the electron transport together with spin transport in this superlattice. We will show that the translational symmetry along the superlattice growth direction ensures the wavevector a good quantum number, and the weak coupling between adjacent quantum wells leads to the formation of minibands (meV), which is far narrower than the bandwidth of conventional semiconductors (eV). The thickness of the bilayer unit cell determines the widths of minibands, and the spin dependent barriers lead to spin splitting minibands. In our study, we find that by carefully choosing the thickness of ferromagnetic insulator layers and semiconductor layers, the lowest spin degenerate miniband can split into two spin-resolved minibands. This half-metallic band structure makes possible the current through this superlattice 100\% spin-polarized. We will prove that in the so-called miniband conduction regime, the current in a superlattice with high crystal quality is indeed perfectly polarized under a small voltage bias. Because of the spin-dependent barriers in the superlattice, the induced half-metallic miniband paves a way to create a perfectly polarized spin current without an exponential increase of the device resistance, which can hardly be realized using a single spin-filter barrier. 2-dimensional (2D) materials are promising candidates to realize next generation devices for spintronic applications with low-power consumption and quantum operation capability. Magnetic proximity effect can induce an interface exchange field into 2D materials from the adjacent ferromagnetic insulator, which enables efficient spin modulation in 2D devices. In particular, Chapter 3 shows the graphene nanoribbon with armchair boundaries has the so-called Dirac cone and metallic band structure. Relativistic quasi-particles and weak spin-orbit coupling in graphene ensure a relatively long spin lifetime and also a long spin diffusion/relaxation length. A strong magnetic exchange field arises due to the interfacial coupling, which can be determined from Zeeman spin-Hall effect. Based on these properties of graphene, we propose a new type of spin field effect transistor (SpinFET) using a graphene nanoribbon with armchair boundaries as the conduction channel. By making use of the interfacial exchange field which derives from the direct coupling with ferromagnetic insulator gate and the quantum confinement effect, the control and manipulation of magnetization of the ferromagnetic insulator layer can modulate the Hamiltonian of the relativistic quasi-particles in the graphene nanoribbon, which controls the time evolution of electron spin and thus make efficient spin modulation feasible. Our numerical calculation shows that the spin lifetime and diffusion length are both long enough so that a phase difference of $\pi$ can be introduced within a time far below the spin lifetime. Thermal noise makes no influence on the current modulation due to the Dirac-like dispersion relation and the negligible spin-orbit coupling, which is crucial to realize large ON-OFF ratios.




2D Monoelemental Materials (Xenes) and Related Technologies


Book Description

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.




Magnetic Properties of Layered Transition Metal Compounds


Book Description

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.




Topology in Magnetism


Book Description

This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.




Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems


Book Description

The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.




Quantum Field Theory of Many-Body Systems


Book Description

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.




Two-Dimensional Nanostructures


Book Description

After the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene," even more research and development efforts have been focused on two-dimensional nanostructures. Illustrating the importance of this area in future applications, Two-Dimensional Nanostructures covers the fabrication methods and properties of these materials. The authors begin with discussions on the properties, size effect, applications, classification groups, and growth of nanostructures. They then describe various characterization and fabrication methods, such as spectrometry, low-energy electron diffraction, physical and chemical vapor deposition, and molecular beam epitaxy. The remainder of the text focuses on mechanical, chemical, and physical properties and fabrication methods, including a new mechanical method for fabricating graphene layers and a model for relating the features and structures of nanostructured thin films. With companies already demonstrating the capabilities of graphene in a flexible touch-screen and a 150 GHz transistor, nanostructures are on their way to replacing silicon as the materials of choice in electronics and other areas. This book aids you in understanding the current chemical, mechanical, and physical processes for producing these "miracle materials."




Spin Current


Book Description

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.




Oxide Electronics


Book Description

Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.