Magnonic Devices


Book Description

This book briefly looks at numerical modeling and micromagnetic simulation results of magnonic crystals, which are periodically modulated magnonic devices regarded as the magnetic counterpart of photonic crystals with spin waves acting as the information carrier. Since the wavelength of the spin wave is several orders of magnitude shorter than that of electromagnetic waves of the same frequency, magnonic crystals are promising candidates for miniaturization, especially in the fields of data storage and processing. The book begins by describing the dispersion relation of dipolar spin waves in a magnonic curved waveguide, solving Walker's equation in cylindrical coordinates, and then calculating the dispersion of exchange spin waves using perturbation theory. It describes simulated nano-contact-driven spin wave excitations in a magnonic cavity, featuring a design of an antidot magnonic crystal around the nano-contact, with the frequency of the spin wave mode generated lying within the band gap of the magnonic crystal. The proposed device behaves as a SWASER—Spin Wave Amplification by the Stimulated Emission of Radiation. This book will find interest among researchers and practitioners interested in the modeling, simulation, and design of novel magnonic devices.




Magnonics


Book Description

Spin waves (and their quanta magnons) can effectively carry and process information in magnetic nanostructures. By analogy to photonics, this research field is labelled magnonics. It comprises the study of excitation, detection, and manipulation of magnons. From the practical point of view, the most attractive feature of magnonic devices is the controllability of their functioning by an external magnetic field. This book has been designed for students and researchers working in magnetism. Here the readers will find review articles written by leading experts working on realization of magnonic devices.




Three-Dimensional Magnonics


Book Description

Magnonics, a research field that uses spin waves, collective excitations of ordered magnetic materials, or magnons (their quanta) as a tool for signal processing, communication, and computation, has rapidly grown during the past decade because of the low-energy consumption and potential compatibility with next-generation circuits beyond CMOS electronics. The interest in 3D magnonic nanostructures follows the latest trend in conventional electronics based on expansion from 2D planar to 3D vertically integrated structures. To remain on the same technological level, a similar expansion should be realized in magnonics. Following this trend, this book provides an overview of recent developments in the exploitation of the third dimension in magnonics, with special focus on the propagation of spin waves in layered magnonic crystals, spin textures, curved surfaces, 3D nano-objects, and cavity magnonics.




Spin Wave Confinement


Book Description

Since the publication of the first edition of Spin-Wave Confinement, the magnetic community’s interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied. The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities. Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.




Solid State Physics


Book Description

Solid State Physics, Volume 72, the latest release in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters authored by an international board of experts. Chapters in this release include Roadmap: The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Solid State Physics series




Recent Advances in Topological Ferroics and their Dynamics


Book Description

Recent Advances in Topological Ferroics and Their Dynamics, Volume 70 in the Solid State Physics series, provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics. Contains contributions from leading authorities in the study of solid state physics, especially at the atomic level Informs and updates on all the latest developments in the field Presents timely, state-of-the-art reviews pertaining to all aspects of solid state physics




Fundamentals of Low Dimensional Magnets


Book Description

A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.




Spintronics Handbook, Second Edition: Spin Transport and Magnetism


Book Description

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.




Curvilinear Micromagnetism


Book Description

This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including both fabrication and characterization. With its coverage of fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.




Frontiers in Materials: Rising Stars 2020


Book Description

The Frontiers in Materials Editorial Office team are delighted to present the second edition of the “Rising Stars” article collection, “Frontiers in Materials: Rising Stars 2020”, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Topic Editors in recognition of their potential to influence the future directions of their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the materials science and engineering field and presents advances in theory, experimentation, and methodology with applications for solving compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank the Topic Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Emily Young Journal Development Manager