Calculus Made Easy


Book Description

Calculus Made Easy by Silvanus P. Thompson and Martin Gardner has long been the most popular calculus primer. This major revision of the classic math text makes the subject at hand still more comprehensible to readers of all levels. With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.




Make: Calculus


Book Description

When Isaac Newton developed calculus in the 1600s, he was trying to tie together math and physics in an intuitive, geometrical way. But over time math and physics teaching became heavily weighted toward algebra, and less toward geometrical problem solving. However, many practicing mathematicians and physicists will get their intuition geometrically first and do the algebra later. Make:Calculus imagines how Newton might have used 3D printed models, construction toys, programming, craft materials, and an Arduino or two to teach calculus concepts in an intuitive way. The book uses as little reliance on algebra as possible while still retaining enough to allow comparison with a traditional curriculum. This book is not a traditional Calculus I textbook. Rather, it will take the reader on a tour of key concepts in calculus that lend themselves to hands-on projects. This book also defines terms and common symbols for them so that self-learners can learn more on their own.




The Calculus Lifesaver


Book Description

For many students, calculus can be the most mystifying and frustrating course they will ever take. Based upon Adrian Banner's popular calculus review course at Princeton University, this book provides students with the essential tools they need not only to learn calculus, but also to excel at it.




How to Think About Analysis


Book Description

Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.




A First Course in Calculus


Book Description

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.




Make: Math Teacher's Supplement


Book Description

Make: Math Teacher's Supplement is the essential guide for teachers, parents, and other educators wanting to supplement their curriculum with Joan Horvath and Rich Cameron's Make: Geometry, Make: Trigonometry, and Make: Calculus books. This book is a companion to the three math books, and does not duplicate the content in them. Drawing on the authors' experience guiding both students and teachers, it covers: The philosophy behind the Make: math book series, including the key inclusion of universal design principles to make the material accessible to those who learn differently A list of topics, projects, and needed maker skills, tied to the math book chapters Key learning objectives and associated assessment ideas A practical primer on 3D printing in an educational environment Helpful tips to manage student 3D printed workflow Five specific examples of ways to use content from the math books, including studying geometry with castles and using LEGO bricks to demonstrate calculus concepts Packed with tips and links to online resources, Make: Math Teacher's Supplement will let you see how to build math intuition to create a solid base for your learner's future.




Infinite Powers


Book Description

This is the captivating story of mathematics' greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death. Taking us on a thrilling journey through three millennia, professor Steven Strogatz charts the development of this seminal achievement from the days of Aristotle to today's million-dollar reward that awaits whoever cracks Reimann's hypothesis. Filled with idiosyncratic characters from Pythagoras to Euler, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilization, including science, politics, ethics, philosophy, and much besides.




Calculus


Book Description

In Calculus: Multivariable, 12th Edition, an expert team of mathematicians delivers a rigorous and intuitive exploration of calculus, introducing concepts like derivatives and integrals of multivariable functions. Using the Rule of Four, the authors present mathematical concepts from verbal, algebraic, visual, and numerical points of view. The book includes numerous exercises, applications, and examples that help readers learn and retain the concepts discussed within.




The Calculus Story


Book Description

"[Acheson] introduces the fundamental ideas of calculus through the story of how the subject developed, from approximating π to imaginary numbers, and from Newton's falling apple to the vibrations of an electric guitar."--Back cover