Making Chemistry Relevant


Book Description

Unique new approaches for making chemistry accessible to diverse students Students' interest and achievement in academics improve dramatically when they make connections between what they are learning and the potential uses of that knowledge i n the workplace and/or in the world at large. Making Chemistry Relevant presents a unique collection of strategies that have been used successfully in chemistry classrooms to create a learner-sensitive environment that enhances academic achievement and social competence of students. Rejecting rote memorization, the book proposes a cognitive constructivist philosophy that casts the teacher as a facilitator helping students to construct solutions to problems. Written by chemistry professors and research groups from a wide variety of colleges and universities, the book offers a number of creative ways to make chemistry relevant to the student, including: Teaching science in the context of major life issues and STEM professions Relating chemistry to current events such as global warming, pollution, and terrorism Integrating science research into the undergraduate laboratory curriculum Enriching the learning experience for students with a variety of learning styles as well as accommodating the visually challenged students Using media, hypermedia, games, and puzzles in the teaching of chemistry Both novice and experienced faculty alike will find valuable ideas ready to be applied and adapted to enhance the learning experience of all their students.




Relevant Chemistry Education


Book Description

This book is aimed at chemistry teachers, teacher educators, chemistry education researchers, and all those who are interested in increasing the relevance of chemistry teaching and learning as well as students' perception of it. The book consists of 20 chapters. Each chapter focuses on a certain issue related to the relevance of chemistry education. These chapters are based on a recently suggested model of the relevance of science education, encompassing individual, societal, and vocational relevance, its present and future implications, as well as its intrinsic and extrinsic aspects. “Two highly distinguished chemical educators, Ingo Eilks and AviHofstein, have brought together 40 internationally renowned colleagues from 16 countries to offer an authoritative view of chemistry teaching today. Between them, the authors, in 20 chapters, give an exceptional description of the current state of chemical education and signpost the future in both research and in the classroom. There is special emphasis on the many attempts to enthuse students with an understanding of the central science, chemistry, which will be helped by having an appreciation of the role of the science in today’s world. Themes which transcend all education such as collaborative work, communication skills, attitudes, inquiry learning and teaching, and problem solving are covered in detail and used in the context of teaching modern chemistry. The book is divided into four parts which describe the individual, the societal, the vocational and economic, and the non-formal dimensions and the editors bring all the disparate leads into a coherent narrative, that will be highly satisfying to experienced and new researchers and to teachers with the daunting task of teaching such an intellectually demanding subject. Just a brief glance at the index and the references will convince anyone interested in chemical education that this book is well worth studying; it is scholarly and readable and has tackled the most important issues in chemical education today and in the foreseeable future.” – Professor David Waddington, Emeritus Professor in Chemistry Education, University of York, United Kingdom




Teaching Chemistry – A Studybook


Book Description

This book focuses on developing and updating prospective and practicing chemistry teachers’ pedagogical content knowledge. The 11 chapters of the book discuss the most essential theories from general and science education, and in the second part of each of the chapters apply the theory to examples from the chemistry classroom. Key sentences, tasks for self-assessment, and suggestions for further reading are also included. The book is focused on many different issues a teacher of chemistry is concerned with. The chapters provide contemporary discussions of the chemistry curriculum, objectives and assessment, motivation, learning difficulties, linguistic issues, practical work, student active pedagogies, ICT, informal learning, continuous professional development, and teaching chemistry in developing environments. This book, with contributions from many of the world’s top experts in chemistry education, is a major publication offering something that has not previously been available. Within this single volume, chemistry teachers, teacher educators, and prospective teachers will find information and advice relating to key issues in teaching (such as the curriculum, assessment and so forth), but contextualised in terms of the specifics of teaching and learning of chemistry, and drawing upon the extensive research in the field. Moreover, the book is written in a scholarly style with extensive citations to the literature, thus providing an excellent starting point for teachers and research students undertaking scholarly studies in chemistry education; whilst, at the same time, offering insight and practical advice to support the planning of effective chemistry teaching. This book should be considered essential reading for those preparing for chemistry teaching, and will be an important addition to the libraries of all concerned with chemical education. Dr Keith S. Taber (University of Cambridge; Editor: Chemistry Education Research and Practice) The highly regarded collection of authors in this book fills a critical void by providing an essential resource for teachers of chemistry to enhance pedagogical content knowledge for teaching modern chemistry. Through clever orchestration of examples and theory, and with carefully framed guiding questions, the book equips teachers to act on the relevance of essential chemistry knowledge to navigate such challenges as context, motivation to learn, thinking, activity, language, assessment, and maintaining professional expertise. If you are a secondary or post-secondary teacher of chemistry, this book will quickly become a favorite well-thumbed resource! Professor Hannah Sevian (University of Massachusetts Boston)




Chemistry: A Very Short Introduction


Book Description

Most people remember chemistry from their schooldays as largely incomprehensible, a subject that was fact-rich but understanding-poor, smelly, and so far removed from the real world of events and pleasures that there seemed little point, except for the most introverted, in coming to terms with its grubby concepts, spells, recipes, and rules. Peter Atkins wants to change all that. In this Very Short Introduction to Chemistry, he encourages us to look at chemistry anew, through a chemist's eyes, in order to understand its central concepts and to see how it contributes not only towards our material comfort, but also to human culture. Atkins shows how chemistry provides the infrastructure of our world, through the chemical industry, the fuels of heating, power generation, and transport, as well as the fabrics of our clothing and furnishings. By considering the remarkable achievements that chemistry has made, and examining its place between both physics and biology, Atkins presents a fascinating, clear, and rigorous exploration of the world of chemistry - its structure, core concepts, and exciting contributions to new cutting-edge technologies. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Readicide


Book Description

Read-i-cide: The systematic killing of the love of reading, often exacerbated by the inane, mind-numbing practices found in schools. Reading is dying in our schools. Educators are familiar with many of the factors that have contributed to the decline, poverty, second-language issues, and the ever-expanding choices of electronic entertainment. In this provocative book Readicide: How Schools are Killing Reading and What You Can Do About It , author and teacher Kelly Gallagher suggests it is time to recognize a new and significant contributor to the death of reading: our schools. Readicide , Gallagher argues that American schools are actively (though unwittingly) furthering the decline of reading. Specifically, he contends that the standard instructional practices used in most schools are killing reading by:Valuing standardized testing over the development of lifelong readersMandating breadth over depth in instructionRequiring students to read difficult texts without proper instructional support and insisting students focus on academic textsIgnoring the importance of developing recreational readingLosing sight of authentic instruction in the looming shadow of political pressuresReadicide provides teachers, literacy coaches, and administrators with specific steps to reverse the downward spiral in reading-;steps that will help prevent the loss of another generation of readers.




Professional Development of Chemistry Teachers


Book Description

Continuous professional development of chemistry teachers is essential for any effective chemistry teaching due to the evolving nature of the subject matter and its instructional techniques. Professional development aims to keep chemistry teaching up-to-date and to make it more meaningful, more educationally effective, and better aligned to current requirements. Presenting models and examples of professional development for chemistry teachers, from pre-service preparation through to continuous professional development, the authors walk the reader through theory and practice. The authors discuss factors which affect successful professional development, such as workload, availability and time constraints, and consider how we maintain the life-long learning of chemistry teachers. With a solid grounding in the literature and drawing on many examples from the authors' rich experiences, this book enables researchers and educators to better understand teachers' roles in effective chemistry education and the importance of their professional development.




Science/Technology/Society as Reform in Science Education


Book Description

Science/Technology/Society (S/T/S) is a reform effort to broaden science as a discipline in schools and colleges; to relate science to other facets of the curriculum; and to relate science specifically to technology and to the society that supports and produces new conceptualizations of both. S/T/S is also defined as the teaching and learning of science/technology in the context of human experience. It focuses on a method of teaching that recognizes the importance that experience in the real world has on the learning process. And it recognizes that real learning can occur only when the learner is engaged and able to construct her or his own meaning. Science/Technology/Society as Reform in Science Education, is rich with examples of such teaching and learning. It includes impressive research evidence that illustrates that progress has been made and goals have been met. For teachers and administrators alike, this book provides and validates new visions for science education.




Learning with Understanding in the Chemistry Classroom


Book Description

This volume offers a critical examination of a variety of conceptual approaches to teaching and learning chemistry in the school classroom. Presenting up-to-date research and theory and featuring contributions by respected academics on several continents, it explores ways of making knowledge meaningful and relevant to students as well as strategies for effectively communicating the core concepts essential for developing a robust understanding of the subject. Structured in three sections, the contents deal first with teaching and learning chemistry, discussing general issues and pedagogical strategies using macro, sub-micro and symbolic representations of chemical concepts. Researchers also describe new and productive teaching strategies. The second section examines specific approaches that foster learning with understanding, focusing on techniques such as cooperative learning, presentations, laboratory activities, multimedia simulations and role-playing in forensic chemistry classes. The final part of the book details learner-centered active chemistry learning methods, active computer-aided learning and trainee chemistry teachers` use of student-centered learning during their pre-service education. Comprehensive and highly relevant, this new publication makes a significant contribution to the continuing task of making chemistry classes engaging and effective.




Effective Chemistry Communication in Informal Environments


Book Description

Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community lacks a cohesive, evidence-based guide for designing effective communication activities. This report is organized into two sections. Part A: The Evidence Base for Enhanced Communication summarizes evidence from communications, informal learning, and chemistry education on effective practices to communicate with and engage publics outside of the classroom; presents a framework for the design of chemistry communication activities; and identifies key areas for future research. Part B: Communicating Chemistry: A Framework for Sharing Science is a practical guide intended for any chemists to use in the design, implementation, and evaluation of their public communication efforts.




Problems and Problem Solving in Chemistry Education


Book Description

Problem solving is central to the teaching and learning of chemistry at secondary, tertiary and post-tertiary levels of education, opening to students and professional chemists alike a whole new world for analysing data, looking for patterns and making deductions. As an important higher-order thinking skill, problem solving also constitutes a major research field in science education. Relevant education research is an ongoing process, with recent developments occurring not only in the area of quantitative/computational problems, but also in qualitative problem solving. The following situations are considered, some general, others with a focus on specific areas of chemistry: quantitative problems, qualitative reasoning, metacognition and resource activation, deconstructing the problem-solving process, an overview of the working memory hypothesis, reasoning with the electron-pushing formalism, scaffolding organic synthesis skills, spectroscopy for structural characterization in organic chemistry, enzyme kinetics, problem solving in the academic chemistry laboratory, chemistry problem-solving in context, team-based/active learning, technology for molecular representations, IR spectra simulation, and computational quantum chemistry tools. The book concludes with methodological and epistemological issues in problem solving research and other perspectives in problem solving in chemistry. With a foreword by George Bodner.