Malliavin Calculus for Levy Processes and Infinite-Dimensional Brownian Motion


Book Description

Assuming only basic knowledge of probability theory and functional analysis, this book provides a self-contained introduction to Malliavin calculus and infinite-dimensional Brownian motion. In an effort to demystify a subject thought to be difficult, it exploits the framework of nonstandard analysis, which allows infinite-dimensional problems to be treated as finite-dimensional. The result is an intuitive, indeed enjoyable, development of both Malliavin calculus and nonstandard analysis. The main aspects of stochastic analysis and Malliavin calculus are incorporated into this simplifying framework. Topics covered include Brownian motion, Ornstein-Uhlenbeck processes both with values in abstract Wiener spaces, Levy processes, multiple stochastic integrals, chaos decomposition, Malliavin derivative, Clark-Ocone formula, Skorohod integral processes and Girsanov transformations. The careful exposition, which is neither too abstract nor too theoretical, makes this book accessible to graduate students, as well as to researchers interested in the techniques.




Malliavin Calculus for Lévy Processes and Infinite-dimensional Brownian Motion


Book Description

"Assuming only basic knowledge of probability theory and functional analysis, this book provides a self-contained introduction to Malliavin calculus and infinite-dimensional Brownian motion. In an effort to demystify a subject thought to be difficult, it exploits the framework of nonstandard analysis, which allows infinite-dimensional problems to be treated as finite-dimensional. The result is an intuitive, indeed enjoyable, development of both Malliavin calculus and nonstandard analysis. The main aspects of stochastic analysis and Malliavin calculus are incorporated into this simplifying framework. Topics covered include Brownian motion, Ornstein-Uhlenbeck processes both with values in abstract Wiener spaces, Lévy processes, multiple stochastic integrals, chaos decomposition, Malliavin derivative, Clark-Ocone formula, Skorohod integral processes and Girsanov transformations. The careful exposition, which is neither too abstract nor too theoretical, makes this book accessible to graduate students, as well as to researchers interested in the techniques"--




Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion


Book Description

After functional, measure and stochastic analysis prerequisites, the author covers chaos decomposition, Skorohod integral processes, Malliavin derivative and Girsanov transformations.




Lévy Processes and Stochastic Calculus


Book Description

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.




Nonstandard Analysis for the Working Mathematician


Book Description

Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.




Malliavin Calculus for Lévy Processes with Applications to Finance


Book Description

This book is an introduction to Malliavin calculus as a generalization of the classical non-anticipating Ito calculus to an anticipating setting. It presents the development of the theory and its use in new fields of application.




Normal Approximations with Malliavin Calculus


Book Description

This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.




Infinite-dimensional Analysis: Operators In Hilbert Space; Stochastic Calculus Via Representations, And Duality Theory


Book Description

The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.




Stochastic Analysis


Book Description

Developing the Itô calculus and Malliavin calculus in tandem, this book crystallizes modern day stochastic analysis into a single volume.




Quantum and Stochastic Mathematical Physics


Book Description

Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.