Managing 12 Volts


Book Description

MANAGING 12 VOLTS explains to RV boat, and alternative energy users how to upgrade, operate, and troubleshoot 12 volt electrical systems. There is confusion and misunderstanding about 12 volt systems. This book teaches layman how batteries, chargers, and electrical circuits work so that they can make intelligent decisions when selecting or operating their system.




How to Tune and Modify Engine Management Systems


Book Description

Drawing on a wealth of knowledge and experience and a background of more than 1,000 magazine articles on the subject, engine control expert Jeff Hartman explains everything from the basics of engine management to the building of complicated project cars. Hartman has substantially updated the material from his 1993 MBI book Fuel Injection (0-879387-43-2) to address the incredible developments in automotive fuel injection technology from the past decade, including the multitude of import cars that are the subject of so much hot rodding today. Hartman's text is extremely detailed and logically arranged to help readers better understand this complex topic.




Design of Power Management Integrated Circuits


Book Description

Comprehensive resource on power management ICs affording new levels of functionality and applications with cost reduction in various fields Design of Power Management Integrated Circuits is a comprehensive reference for power management IC design, covering the circuit design of main power management circuits like linear and switched-mode voltage regulators, along with sub-circuits such as power switches, gate drivers and their supply, level shifters, the error amplifier, current sensing, and control loop design. Circuits for protection and diagnostics, as well as aspects of the physical design like lateral and vertical power delivery, pin-out, floor planning, grounding/supply guidelines, and packaging, are also addressed. A full chapter is dedicated to the design of integrated passives. The text illustrates the application of power management integrated circuits (PMIC) to growth areas like computing, the internet of Things, mobility, and renewable energy. Includes numerous real-world examples, case studies, and exercises illustrating key design concepts and techniques. Offering a unique insight into this rapidly evolving technology through the author's experience developing PMICs in both the industrial and academic environment, Design of Power Management Integrated Circuits includes information on: Capacitive, inductive and hybrid DC-DC converters and their essential circuit blocks, covering error amplifiers, comparators, and ramp generators Sensing, protection, and diagnostics, covering thermal protection, inductive loads and clamping structures, under-voltage, reference and power-on reset generation Integrated MOS, MOM and MIM capacitors, integrated inductors Control loop design and PWM generation ensuring stability and fast transient response; subharmonic oscillations in current mode control (analysis and circuit design for slope compensation) DC behavior and DC-related circuit design, covering power efficiency, line and load regulation, error amplifier, dropout, and power transistor sizing Commonly used level shifters (including sizing rules) and cascaded (tapered) driver sizing and optimization guidelines Optimizing the physical design considering packaging, floor planning, EMI, pinout, PCB design and thermal design Design of Power Management Integrated Circuits is an essential resource on the subject for circuit designers/IC designers, system engineers, and application engineers, along with advanced undergraduate students and graduate students in related programs of study.













Scot. Text S.


Book Description