Managing Uncertainty in Expert Systems


Book Description

3. Textbook for a course in expert systems,if an emphasis is placed on Chapters 1 to 3 and on a selection of material from Chapters 4 to 7. There is also the option of using an additional commercially available sheU for a programming project. In assigning a programming project, the instructor may use any part of a great variety of books covering many subjects, such as car repair. Instructions for mostofthe "weekend mechanic" books are close stylisticaUy to expert system rules. Contents Chapter 1 gives an introduction to the subject matter; it briefly presents basic concepts, history, and some perspectives ofexpert systems. Then itpresents the architecture of an expert system and explains the stages of building an expert system. The concept of uncertainty in expert systems and the necessity of deal ing with the phenomenon are then presented. The chapter ends with the descrip tion of taxonomy ofexpert systems. Chapter 2 focuses on knowledge representation. Four basic ways to repre sent knowledge in expert systems are presented: first-order logic, production sys tems, semantic nets, and frames. Chapter 3 contains material about knowledge acquisition. Among machine learning techniques, a methodofrule learning from examples is explained in de tail. Then problems ofrule-base verification are discussed. In particular, both consistency and completeness oftherule base are presented.




Approaches for Managing Uncertainty in Learning Management Systems


Book Description

The notion of uncertainty in expert systems is dealing with vague data, incomplete information, and imprecise knowledge. Different uncertainty types which are imprecision, vagueness, ambiguity, and inconsistence need different handling models. Uncertain knowledge representation and analysis is an essential issue.




A Methodology for Uncertainty in Knowledge-Based Systems


Book Description

In this book the consequent use of probability theory is proposed for handling uncertainty in expert systems. It is shown that methods violating this suggestion may have dangerous consequences (e.g., the Dempster-Shafer rule and the method used in MYCIN). The necessity of some requirements for a correct combining of uncertain information in expert systems is demonstrated and suitable rules are provided. The possibility is taken into account that interval estimates are given instead of exact information about probabilities. For combining information containing interval estimates rules are provided which are useful in many cases.




Expert Systems and Probabilistic Network Models


Book Description

Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.




Probabilistic Reasoning in Expert Systems


Book Description

This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.







Fuzzy Expert Systems for Disease Diagnosis


Book Description

The development of fuzzy expert systems has provided new opportunities for problem solving amidst uncertainties. The medical field, in particular, has benefitted tremendously from advancing fuzzy system technologies. Fuzzy Expert Systems for Disease Diagnosis highlights the latest research and developments in fuzzy rule-based methods used in the detection of medical complications and illness. Offering emerging solutions and practical applications, this timely publication is designed for use by researchers, academicians, and students, as well as practitioners in the medical field.




Expert Systems


Book Description

Offering an introduction to the field of expert/knowledge based systems, this text covers current and emerging trends as well as future research areas. It considers both the system shell and programming environment approaches to expert system development.;College or university bookshops may order five or more copies at a special student price. Price is available on request.




Probabilistic Networks and Expert Systems


Book Description

Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.




Neutrosophic Sets and Systems, vol. 11/2016


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.