Manifolds, Groups, Bundles, and Spacetime


Book Description

Manifolds, Groups, Bundles, and Spacetime was written for those who are interested in modern differential geometry and its applications in physics. The primary material is suitable for a graduate level course in the theory of differentiable manifolds, Lie groups, and fiber bundles. The first two chapters are an introduction to concepts from linear algebra and tensors and can be read to establish familiarity with the notation and conventions of the text by those who are already familiar with these topics. The third and fourth chapters are a review of topics from advanced calculus and topology and are included primarily as a convenient reference.







Mathematics For Physics: An Illustrated Handbook


Book Description

This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.




Categories, Bundles and Spacetime Topology


Book Description

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown'The point of a Pin'. van Gulik's TheChinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging SUbdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.




Manifolds and Lie Groups


Book Description

This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgins 30 B. Smyth 4 A. Borel, Institute for Michigan State University 45 J. Curry Advanced Study 18 S. Harris, 31 A. Pradhan 46 D. Norris 32 R. Escobales, 5 Y. Matsushima University of Missouri 47 J. Spellecy Canisius College 6 Mrs. Matsushima 19 J. Beem, 48 M. Clancy 7 K. Nomizu, University of Missouri 33 L. Smiley 49 J. Rabinowitz, University 20 D. Collins, 34 C.H. Sung Brown University of Illinois at Chicago Valparaiso University 35 M. Markowitz 8 J.-1. Hano, 50 R. Richardson, Australian Washington University 36 A. Sommese 21 I. Satake, University of National University California at Berkeley 37 A. Vitter, 9 J. Carrell, University of 51 D. Lieberman, 22 H.




Gauge Theory and Variational Principles


Book Description

This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas. Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field equation. Additional topics include free Dirac electron fields; interactions; calculus on frame bundle; and unification of gauge fields and gravitation. The text concludes with references, a selected bibliography, an index of notation, and a general index.




Introduction to Topological Manifolds


Book Description

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.




How is Quantum Field Theory Possible?


Book Description

How can we know the microscopic world without a measurement theory? What are the general conditions of the world that make possible such knowledge? What are the presuppositions of physical theories? This book includes an analysis of quantum field theory, and quantum mechanics and interacting systems are addressed in a unified framework.




Differential Geometry and Lie Groups for Physicists


Book Description

Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.