Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops


Book Description

The long-awaited English edition of the famous "Mansfeld" gives a full account of all agricultural and horticultural plants, other than ornamentals, grown throughout the world presently or in the past. Over 6000 species are covered, including food crops, forage, oil, fibre, and others. For the genera and species information is given on the synonyms, trivial names, occurance, usage, variability and phylogeny. Summaries are given on some hundreds of additional species which have been grown under experimental conditions or in breeding programs. Reference is also made to crops which hardly differ from their wild forms or grown only locally and regionally. This work is a unique documentation of the wide potential of cultivable plants.




Biodiversity of Vegetable Crops, A Living Heritage


Book Description

Intensive agriculture has generally resulted in higher productivity, but also in a trend towards decreasing levels of agro-biodiversity, which represents a key point in ensuring the adaptability and resilience of agro-ecosystems in the global challenge to produce more and better food in a sustainable way. The biodiversity of vegetable crops includes genetic diversity—both as species diversity (interspecific diversity) and as a diversity of genes within a species (intraspecific diversity) with regard to the vegetable varieties grown—and the diversity of agro-ecosystems (agro-biodiversity). The purpose of this Special Issue is to publish high-quality research papers addressing recent progress and perspectives on different aspects related to the biodiversity of vegetable crops. Original, high-quality contributions that have not yet been published, or that are not currently under review by other journals have been sought. The papers in this Special Issue cover a broad range of aspects and report recent research results regarding agro-biodiversity, which continues to be of significant relevance for both genetic and agricultural applications. All contributions are of significant relevance and could stimulate further research in this area.







The Carbon Farming Solution


Book Description

With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution "This book is the toolkit for making the soil itself a sponge for carbon. It’s a powerful vision."—Bill McKibben "The Carbon Farming Solution is a book we will look back upon decades from now and wonder why something so critically relevant could have been so overlooked until that time. . . . [It] describes the foundation of the future of civilization."—Paul Hawken In this groundbreaking book, Eric Toensmeier argues that agriculture—specifically, the subset of practices known as "carbon farming"—can, and should be, a linchpin of a global climate solutions platform. Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in above-ground biomass. Combined with a massive reduction in fossil fuel emissions—and in concert with adaptation strategies to our changing environment— carbon farming has the potential to bring us back from the brink of disaster and return our atmosphere to the "magic number" of 350 parts per million of carbon dioxide. Toensmeier’s book is the first to bring together these powerful strategies in one place. Includes in-depth analysis of the available research. Carbon farming can take many forms. The simplest practices involve modifications to annual crop production. Although many of these modifications have relatively low sequestration potential, they are widely applicable and easily adopted, and thus have excellent potential to mitigate climate change if practiced on a global scale. Likewise, grazing systems such as silvopasture are easily replicable, don’t require significant changes to human diet, and—given the amount of agricultural land worldwide that is devoted to pasture—can be important strategies in the carbon farming arsenal. But by far, agroforestry practices and perennial crops present the best opportunities for sequestration. While many of these systems are challenging to establish and manage, and would require us to change our diets to new and largely unfamiliar perennial crops, they also offer huge potential that has been almost entirely ignored by climate crusaders. Many of these carbon farming practices are already implemented globally on a scale of millions of hectares. These are not minor or marginal efforts, but win-win solutions that provide food, fodder, and feedstocks while fostering community self-reliance, creating jobs, protecting biodiversity, and repairing degraded land—all while sequestering carbon, reducing emissions, and ultimately contributing to a climate that will remain amenable to human civilization. Just as importantly to a livable future, these crops and practices can contribute to broader social goals such as women’s empowerment, food sovereignty, and climate justice. The Carbon Farming Solution is—at its root—a toolkit and the most complete collection of climate-friendly crops and practices currently available. With this toolkit, farmers, communities, and governments large and small, can successfully launch carbon farming projects with the most appropriate crops and practices to their climate, locale, and socioeconomic needs. Toensmeier’s ultimate goal is to place carbon farming firmly in the center of the climate solutions platform, alongside clean solar and wind energy. With The Carbon Farming Solution, Toensmeier wants to change the discussion, impact policy decisions, and steer mitigation funds to the research, projects, and people around the world who envision a future where agriculture becomes the protagonist in this fraught, urgent, and unprecedented drama of our time. Citizens, farmers, and funders will be inspired to use the tools presented in this important book to transform degraded lands around the world into productive carbon-storing landscapes.







Transgenic Crops IV


Book Description

This volume presents the current knowledge of plant biotechnology as an important tool for crop improvement. It covers cereals, vegetables, root crops, herbs and spices. This volume is an invaluable reference for plant breeders, researchers and graduate students in the fields of plant biotechnology, agronomy, horticulture, genetics and both plant cell and molecular biology.




Yams


Book Description

Dioscorea species, commonly known as yams, are tuberous plants that constitute a major staple food in many parts of Africa, South East Asia, Latin America and the South Pacific. Yams are cultivated in about 50 mainly tropical countries, and the world annual production of edible tubers is around 73 million tonnes. This book evaluates the current state of knowledge about yams, and how this knowledge affects practices in production, cultivation and postharvest technology. Dioscorea is a diverse genus in terms of its geographical origin, domestication, morphology, chemistry and breeding. Therefore, besides concentrating on the dozen or so species that are used as major food crops, the book examines species that have limited commercial or domestic value at present, but have the potential in future to contribute to the production and utilization of this crop.







Rye


Book Description

Owing to its considerable winter hardiness, rye is a cereal that played a major role in the feeding of European populations throughout the Middle Ages. Recent data shows that rye is grown on about 5.4 million hectares, with a world production of approximately 13 million tons. While still an important bread food in many countries, rye produced for bread making has decreased or stagnated, whereas production is increasing for other market segments. Particularly, rye for feeding, ethanol processing, and biogas is promoted in Europe. The first comprehensive monograph on rye, Rye: Genetics, Breeding, and Cultivation gathers all the relevant and historic information from botany and genetics to utilization and sustainability of rye. The book covers taxonomy, morphology, and other botany-related aspects of rye. It describes its physiology, cytology, and genetics, including use for genetic improvement of other cereals. The author addresses various types of breeding such as population, hybrid, and molecular breeding. He also discusses rye cropping, including seeding techniques, fungal and viral diseases, and predators. The book examines the various uses for rye beyond bread making. This includes feeding, biomass and biogas production, ethanol production, and other important characteristics such as phytosterol content and antioxidant activity. It also explores the nutritional value of rye. Written by a leading expert in the field, this monograph compiles the most important facets of rye research, past and present.