Manufacturing and Novel Applications of Multilayer Polymer Films


Book Description

Manufacturing and Novel Applications of Multilayer Polymer Films discusses the advancements in multilayer technology, including its capability to produce hundreds of layers in a single film by a melt coextrusion process. These engineered films can have significantly enhanced performance properties, allowing films to be made thinner, stronger, and with better sealing properties. As recent developments in feedblocks and materials have opened up a range of new possibilities, this book discusses different feedblocks, and viscosity and material considerations. It is the first comprehensive summary of the latest technology in multilayer film processing and related applications, and is written from a practical perspective, translating research into commercial production and real world products. The book provides fundamental knowledge on microlayer coextrusion processing technology, how to fabricate such structures, structure and properties of such microlayers, and potential applications, thus helping research scientists and engineers develop products which not only fulfill their primary function, but can also be manufactured reliably, safely, and economically. - Provides a fundamental knowledge of microlayer coextrusion processing, including how to fabricate microlayer structures, the properties of microlayers, and potential applications, including optics, polymer film capacitors, and semiconductors - Includes an in-depth analysis of all technologies used for producing multilayered films and structures by coextrusion processing - Thoroughly assesses potential future trends in multilayer coextrusion technology, thus enabling engineers and scientists to stay ahead of the curve in this rapidly advancing area




Thermoplastics and Thermoplastic Composites


Book Description

Thermoplastics and Thermoplastic Composites, Third Edition bridges the technology and business aspects of thermoplastics, providing a guide designed to help engineers working in real-world industrial settings. The author explores the criteria for material selection, provides a detailed guide to each family of thermoplastics, and explains the various processing options for each material type. More than 30 families of thermoplastics are described with information on their advantages and drawbacks, special grades, prices, transformation processes, applications, thermal behavior, technological properties (tenacity, friction, dimensional stability), durability (ageing, creep, fatigue), chemical and fire behavior, electrical properties, and joining possibilities. In this third edition, standards and costs have been updated for all materials, and more information on topics such as bioplastics, 3D printing and recycling have been added. In addition, an entirely new chapter on the concept of 'Industry 4.0' has been added, with guidance and suggestions on the incorporation of virtualization, connectivity, and automation into the plastics engineering process to reduce materials and processing failure. - Includes detailed case studies that illustrate best practices across a wide range of applications and industry sectors - Presents a new chapter on the 'Industry 4.0' concept - Suggests software solutions to assist with design, decision-making and management, along with other forms of automation




Chemical Resistance of Thermosets


Book Description

Chemical Resistance of Commodity Thermoplastics provides a comprehensive, cross-referenced compilation of chemical resistance data that explains the effect of thousands of reagents, the environment and other exposure media on the properties and characteristics of thermosets– plastics which are used in a range of applications. Specifically, the resistance data in this book covers the following materials, allyl, epoxy, unsaturated polyester resin, unsaturated polyurethane resin, vinyl ester resin, furan resin, polyaminobismaleimide, acrylics, polycyanurates and filled/reinforced thermosets. A huge range of exposure media are included, from aircraft fuel, to alcohol, corn syrup, hydrochloric acid and salt to silver acetate. This book is a must-have reference for engineers and scientists designing and working with thermosets in environments where they come into contact with corrosive or reactive substances, from automotive and aerospace, to coatings, adhesives, electrical insulation, fittings and other applications. - Presents comprehensive, comparable and trustworthy chemical resistance data for thousands of exposure media on the properties of thermosets - Includes coverage of ionomers, polyethylene, polypropylene, polystyrene, PVC and other polyolefins and polyesters - Provides a must have reference for engineers selecting materials for a range of application areas using thermosets, including aerospace, automotive, chemical process industries, coatings and adhesives




Recycling of Polyurethane Foams


Book Description

Recycling of Polyurethane Foams introduces the main degradation/depolymerization processes and pathways of polyurethane foam materials, focusing on industrial case studies and academic reviews from recent research and development projects. The book can aid practitioners in understanding the basis of polymer degradation and its relationship with industrial processes, which can be of substantial value to industrial complexes the world over. The main pathways of polymer recycling via different routes and industrial schemes are detailed, covering all current techniques, including regrinding, rebinding, adhesive pressing and compression moulding of recovered PU materials that are then compared with depolymerization approaches. The book examines life cycle assessment and cost analysis associated with polyurethane foams waste management, showing the potential of various techniques. This book will help academics and researchers identify and improve on current depolymerization processes, and it will help industry sustainability professionals choose the appropriate approach for their own waste management systems, thus minimizing the costs and environmental impact of their PU-based end products. - Offers a comprehensive review of all polyurethane foam recycling processes, including both chemical and mechanical approaches - Assesses the potential of each recycling process - Helps industry-based practitioners decide which approach to take to minimize the cost and environmental impact of their end product - Enables academics and researchers to identify and improve upon current processes of degradation and depolymerization




The Science and Technology of Flexible Packaging


Book Description

The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost. - Provides essential information on all aspects of multilayer films in flexible packaging, including processing, properties, materials and end use - Bridges the gap between scientific principles and practical challenges - Includes explanations to assist practitioners in overcoming challenges - Enables the reader to address new challenges, such as design for sustainability and eCommerce




Polyester Films


Book Description

This volume presents a comprehensive review of key aspects of polyester film technology, ranging from first principles to practical applications Bringing together world-class experts to review the state-of-the-art of key materials and processing elements of polyester film technology, Polyester Films covers a wide range of topics with direct utility to students, practitioners, business managers and researchers, in academia and industry. Topics covered in this volume include survey of optical and physical properties, microlayer coextrusion, polyester ionomers, polyester blends, biomedical applications and recycling . In particular, the text focuses on novel design and application of polyester films, such as those used in the production of flat panel displays, flexible electronics, and barrier films. The overriding objective of the book is to scope the multitude of options available to material and product designers in manipulating the properties of polyester films to meet specific performance and product criteria. These options include synthetic modifications (copolymerization), physical enhancements (blending), and process upgrades (tenter-frame changes, coextrusion, and coating). Edited by two highly qualified material scientists with extensive experience in academia and industry, Polyester Films covers topics such as: Historical review of polyester film technology Overview of physical performance and applications of key polyester films, especially PET and PEN Synthetic options available for manipulating the structure and properties of polyesters, with special focus on polyester ionomers Main blending options available to enhance the performance of commodity polyesters Rheo-optical properties of polyester films and corresponding testing methodology Micro-layer coextrusion technology as applied to modify the performance of polyester films Bio-medical applications Polyester recycling, with special focus on upcycling With an interdisciplinary approach covering the performance of real-life products and components, Polyester Films is an essential resource for researchers and engineers in academia and industry working in physics, material science, chemistry and process engineering. This volume should also be invaluable for graduate students and early-career researchers in similar fields.




Handbook of Industrial Polyethylene and Technology


Book Description

This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.




Materials Nanoarchitectonics


Book Description

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures




Crystallization in Multiphase Polymer Systems


Book Description

Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites. - Covers crystallization of multiphase polymer systems, including copolymers, blends and nanocomposites - Features comprehensive, detailed information about the basic research, practical applications and new developments for these polymeric materials - Analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale




Organic and Hybrid Photonic Crystals


Book Description

This book provides a multidisciplinary perspective (ranging from chemistry to physics and biology) of the current research and applications of organic and hybrid photonic crystals. The authors detail the chemical and physical tools used to develop organic photonic crystals, explain methods for engineering new nano-structures, and propose novel physical phenomena or technological applications based on such materials. Organic and Hybrid Photonic Crystal lasers, sensors, photovoltaic devices and stimuli responsive devices are discussed.