Mapping Biology Knowledge


Book Description

Mapping Biology Knowledge addresses two key topics in the context of biology, promoting meaningful learning and knowledge mapping as a strategy for achieving this goal. Meaning-making and meaning-building are examined from multiple perspectives throughout the book. In many biology courses, students become so mired in detail that they fail to grasp the big picture. Various strategies are proposed for helping instructors focus on the big picture, using the `need to know' principle to decide the level of detail students must have in a given situation. The metacognitive tools described here serve as support systems for the mind, creating an arena in which learners can operate on ideas. They include concept maps, cluster maps, webs, semantic networks, and conceptual graphs. These tools, compared and contrasted in this book, are also useful for building and assessing students' content and cognitive skills. The expanding role of computers in mapping biology knowledge is also explored.




Mapping Biology Knowledge


Book Description

Mapping Biology Knowledge addresses two key topics in the context of biology, promoting meaningful learning and knowledge mapping as a strategy for achieving this goal. Meaning-making and meaning-building are examined from multiple perspectives throughout the book. In many biology courses, students become so mired in detail that they fail to grasp the big picture. Various strategies are proposed for helping instructors focus on the big picture, using the `need to know' principle to decide the level of detail students must have in a given situation. The metacognitive tools described here serve as support systems for the mind, creating an arena in which learners can operate on ideas. They include concept maps, cluster maps, webs, semantic networks, and conceptual graphs. These tools, compared and contrasted in this book, are also useful for building and assessing students' content and cognitive skills. The expanding role of computers in mapping biology knowledge is also explored.




Mapping Biology Knowledge


Book Description




Biological Knowledge Discovery Handbook


Book Description

The first comprehensive overview of preprocessing, mining,and postprocessing of biological data Molecular biology is undergoing exponential growth in both thevolume and complexity of biological data—and knowledgediscovery offers the capacity to automate complex search and dataanalysis tasks. This book presents a vast overview of the mostrecent developments on techniques and approaches in the field ofbiological knowledge discovery and data mining (KDD)—providingin-depth fundamental and technical field information on the mostimportant topics encountered. Written by top experts, Biological Knowledge DiscoveryHandbook: Preprocessing, Mining, and Postprocessing of BiologicalData covers the three main phases of knowledge discovery (datapreprocessing, data processing—also known as datamining—and data postprocessing) and analyzes both verificationsystems and discovery systems. BIOLOGICAL DATA PREPROCESSING Part A: Biological Data Management Part B: Biological Data Modeling Part C: Biological Feature Extraction Part D Biological Feature Selection BIOLOGICAL DATA MINING Part E: Regression Analysis of Biological Data Part F Biological Data Clustering Part G: Biological Data Classification Part H: Association Rules Learning from Biological Data Part I: Text Mining and Application to Biological Data Part J: High-Performance Computing for Biological DataMining Combining sound theory with practical applications in molecularbiology, Biological Knowledge Discovery Handbook is idealfor courses in bioinformatics and biological KDD as well as forpractitioners and professional researchers in computer science,life science, and mathematics.




Digital Knowledge Maps in Education


Book Description

Digital knowledge maps are ‘at a glance’ visual representations that enable enriching, imaginative and transformative ways for teaching and learning, with the potential to enhance positive educational outcomes. The use of such maps has generated much attention and interest among tertiary education practitioners and researchers over the last few years as higher education institutions around the world begin to invest heavily into new technologies designed to provide online spaces within which to build resources and conduct activities. The key elements of this edited volume will comprise original and innovative contributions to existing scholarship in this field, with examples of pedagogical possibilities as they are currently practiced across a range of contexts. It will contain chapters that address, theory, research and practical issues related to the use of digital knowledge maps in all aspects of tertiary education and draws predominantly on international perspectives with a diverse group of invited contributors. Reports on empirical studies as well as theoretical/conceptual chapters that engage deeply with pertinent questions and issues raised from a pedagogical, social, cultural, philosophical, and/or ethical standpoint are included. Systematic literature reviews dealing with digital knowledge mapping in education are also an integral part of the volume.




Introduction to Computational Biology


Book Description

Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.







Mapping and Sequencing the Human Genome


Book Description

There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.




Handbook of College Science Teaching


Book Description

Are you still using 20th century techniques to teach science to 21st century students? Update your practices as you learn about current theory and research with the authoritative Handbook of College Science Teaching. The Handbook offers models of teaching and learning that go beyond the typical lecture-laboratory format and provides rationales for updated practices in the college classroom. The 38 chapters, each written by experienced, award-wining science faculty, are organized into eight sections: attitudes and motivations; active learning; factors affecting learning; innovative teaching approaches; use for technology, for both teaching and student research; special challenges, such as teaching effectively to culturally diverse or learning disabled students; pre-college science instruction; and improving instruction. No other book fills the Handbook's unique niche as a definitive guide for science professors in all content areas. It even includes special help for those who teach non-science majors at the freshman and sophomore levels. The Handbook is ideal for graduate teaching assistants in need of a solid introduction, senior faculty and graduate cooridinators in charge of training new faculty and grad students, and mid-career professors in search of invigoration.




Learning, Creating, and Using Knowledge


Book Description

This fully revised and updated edition of Learning, Creating, and Using Knowledge recognizes that the future of economic well being in today's knowledge and information society rests upon the effectiveness of schools and corporations to empower their people to be more effective learners and knowledge creators. Novak’s pioneering theory of education presented in the first edition remains viable and useful. This new edition updates his theory for meaningful learning and autonomous knowledge building along with tools to make it operational ─ that is, concept maps, created with the use of CMapTools and the V diagram. The theory is easy to put into practice, since it includes resources to facilitate the process, especially concept maps, now optimised by CMapTools software. CMapTools software is highly intuitive and easy to use. People who have until now been reluctant to use the new technologies in their professional lives are will find this book particularly helpful. Learning, Creating, and Using Knowledge is essential reading for educators at all levels and corporate managers who seek to enhance worker productivity.