Marine Biogeochemical Cycles


Book Description

Marine Biogeochemical Cycles, the new edition of the Open University classic, Ocean Chemistry and Deep-Sea Sediments, provides a thorough introduction to the occurrence, distribution, and cycling of chemical elements in the ocean. Developed through years of testing in classrooms and distance courses, the book’s student-friendly layout, writing, and graphics make it ideal for beginning oceanography students, or for non-majors who need to meet their science requirements. It can be used alone, as a supplement, or in combination with other Open University titles in oceanography. This edition covers the basics on the occurrence, distribution, and cycling of chemical elements in the ocean. It has been revised to include updated content, enhanced graphics, and call-out boxes that provide additional explanations. After a brief introduction to sea-floor sediments, the book shows how the activities of marine organisms cycle nutrients and other dissolved constituents within the oceans and influence the rates at which sediments are formed. It goes on to review the carbonate system and shows how sediments may be transported, and what sediments have taught us about the history of the oceans. It also describes the biological and chemical processes that continue long after sediments have been deposited on the deep-sea floor. It features nearly 150 full-color photographs and illustrations with explanatory captions; most are completely new. Marine Biogeochemical Cycles will be a valuable resource for professionals as well as students of oceanography, specifically marine biogeochemistry. * Covers the basics on the occurrence, distribution, and cycling of chemical elements in the ocean * Features full-color photographs and beautiful illustrations throughout * Reader-friendly layout, writing, and graphics * Pedagogy includes chapter summaries, chapter questions with answers and comments at the end of the book; highlighted key terms; and boxed topics and explanations * Can be used alone, as a supplement, or in combination with other Open University titles in oceanography




Primary Productivity and Biogeochemical Cycles in the Sea


Book Description

Biological processes in the oceans play a crucial role in regulating the fluxes of many important elements such as carbon, nitrogen, sulfur, oxygen, phosphorus, and silicon. As we come to the end of the 20th century, oceanographers have increasingly focussed on how these elements are cycled within the ocean, the interdependencies of these cycles, and the effect of the cycle on the composition of the earth's atmosphere and climate. Many techniques and tools have been developed or adapted over the past decade to help in this effort. These include satellite sensors of upper ocean phytoplankton distributions, flow cytometry, molecular biological probes, sophisticated moored and shipboard instrumentation, and vastly increased numerical modeling capabilities. This volume is the result of the 37th Brookhaven Symposium in Biology, in which a wide spectrum of oceanographers, chemists, biologists, and modelers discussed the progress in understanding the role of primary producers in biogeochemical cycles. The symposium is dedicated to Dr. Richard W. Eppley, an intellectual giant in biological oceanography, who inspired a generation of scientists to delve into problems of understanding biogeochemical cycles in the sea. We gratefully acknowledge support from the U.S. Department of Energy, the National Aeronautics and Space Administration, the National Science Foundation, the National Oceanic and Atmospheric Administration, the Electric Power Research Institute, and the Environmental Protection Agency. Special thanks to Claire Lamberti for her help in producing this volume.




The Marine Microbiome


Book Description

This book describes the state-of-the-art concerning the ‘marine microbiome’ and its uses in biotechnology. The first part discusses the diversity and ecology of marine microorganisms and viruses, including all three domains of life: Bacteria, Archaea, and Eukarya. It discusses whether marine microorganisms exist and, if so, why they might be unique. The second part presents selected marine habitats, their inhabitants and how they influence biogeochemical cycles, while the third discusses the utilization of marine microbial resources, including legal aspects, dissemination, and public awareness. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. The diversity of microbial life remains unquantified and largely unknown, and could represent a hidden treasure for human society. Accordingly, this book is also intended to connect academics and industry, providing essential information for microbiologists from both fields.




The Marine Microbiome


Book Description

This updated and expanded second edition reviews numerous aspects of the marine microbiome and its possible industrial applications. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. In the first part of the book, diversity, origin and evolution of the marine microorganisms and viruses are discussed. The microbes presented originate from all three domains of life: Bacteria, Archaea, and Eukarya. The second part sheds some light on the different communities: it describes marine habitats and how their inhabitants control biogeochemical cycles. The third part finally examines the microbial ocean as a global system and evaluates methods of utilizing marine microbial resources. Adopting a translational approach, the book connects academic research with industrial applications, making it a fascinating read and valuable resource for microbiologists from both domains.







Handbook of Aquatic Microbiology


Book Description

Short Blurb This handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. It highlights the role of microorganisms as pollution indicators and as bio-control agents. The book covers the impact of pollution on microorganisms, biofilms, cyanobacterial blooms, and the metagenomics approach to isolate microbes. Standard Blurb This comprehensive handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. The world’s aquatic environment is facing a serious threat due to inappropriate planning, implementation, and management. This book compiles effective strategies for managing the aquatic environment. It highlights the role of microorganisms as pollution indicators, in bioremediation, and as bio-control agents. The book also covers the impact of pollution on microorganisms, biofilms, cyanobacterial blooms, and the metagenomics approach to isolate microbes. This book is essential for students and researchers of microbiology, environmental sciences, and biotechnology Seasonal Blurb This comprehensive handbook covers the different aspects of the aquatic environment, microbiology, and microbial applications. The world’s aquatic environment is facing a serious threat due to inappropriate planning, implementation, and management. This book compiles effective strategies for managing the aquatic environment. It highlights the role of microorganisms as pollution indicators, in bioremediation, and as bio-control agents. The book also covers the impact of pollution on microorganisms, biofilms, cyanobacterial blooms, and the metagenomics approach to isolate microbes. This book is essential for students and researchers of Microbiology, Environmental Sciences, and Biotechnology. 1 Includes key themes like environmental DNA application, metagenomes, extremophiles, microbial population genetics and statistical aspects of aquatic microbiology 2 Discusses the beneficial microbes of the aquatic environment 3 Covers applications of microbes in bioremediation, as pollution indicators and as algicidal agents 4 Reviews freshwater biogeochemical cycles and sediment microbiology 5 Explores microbial communities of biofloc and microbiomes in aquaponics




The Chemistry of Microbiomes


Book Description

The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.




Host-Microbe Interactions


Book Description

Host-Microbe Interactions, the latest volume in the Progress in Molecular Biology series, provides a forum for the discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their respective fields, along with abundant references. This volume is dedicated to the subject of host-microbe interactions. Provides the latest research on host-microbe interactions, including new discoveries, approaches, and ideas Contains contributions from leading authorities on topics relating to molecular biology Informs and updates on all the latest developments in the field




Microbial Ecology of the Oceans


Book Description

The newly revised and updated third edition of the bestselling book on microbial ecology in the oceans The third edition of Microbial Ecology of the Oceans features new topics, as well as different approaches to subjects dealt with in previous editions. The book starts out with a general introduction to the changes in the field, as well as looking at the prospects for the coming years. Chapters cover ecology, diversity, and function of microbes, and of microbial genes in the ocean. The biology and ecology of some model organisms, and how we can model the whole of the marine microbes, are dealt with, and some of the trophic roles that have changed in the last years are discussed. Finally, the role of microbes in the oceanic P cycle are presented. Microbial Ecology of the Oceans, Third Edition offers chapters on The Evolution of Microbial Ecology of the Ocean; Marine Microbial Diversity as Seen by High Throughput Sequencing; Ecological Significance of Microbial Trophic Mixing in the Oligotrophic Ocean; Metatranscritomics and Metaproteomics; Advances in Microbial Ecology from Model Marine Bacteria; Marine Microbes and Nonliving Organic Matter; Microbial Ecology and Biogeochemistry of Oxygen-Deficient Water Columns; The Ocean’s Microscale; Ecological Genomics of Marine Viruses; Microbial Physiological Ecology of The Marine Phosphorus Cycle; Phytoplankton Functional Types; and more. A new and updated edition of a key book in aquatic microbial ecology Includes widely used methodological approaches Fully describes the structure of the microbial ecosystem, discussing in particular the sources of carbon for microbial growth Offers theoretical interpretations of subtropical plankton biogeography Microbial Ecology of the Oceans is an ideal text for advanced undergraduates, beginning graduate students, and colleagues from other fields wishing to learn about microbes and the processes they mediate in marine systems.