Programming in Martin-Löf's Type Theory


Book Description

In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Löf. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.




Intuitionistic Type Theory


Book Description




Type Theory and Formal Proof


Book Description

Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.




Treatise on Intuitionistic Type Theory


Book Description

Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.







Modal Homotopy Type Theory


Book Description

"The old logic put thought in fetters, while the new logic gives it wings." For the past century, philosophers working in the tradition of Bertrand Russell - who promised to revolutionise philosophy by introducing the 'new logic' of Frege and Peano - have employed predicate logic as their formal language of choice. In this book, Dr David Corfield presents a comparable revolution with a newly emerging logic - modal homotopy type theory. Homotopy type theory has recently been developed as a new foundational language for mathematics, with a strong philosophical pedigree. Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy offers an introduction to this new language and its modal extension, illustrated through innovative applications of the calculus to language, metaphysics, and mathematics. The chapters build up to the full language in stages, right up to the application of modal homotopy type theory to current geometry. From a discussion of the distinction between objects and events, the intrinsic treatment of structure, the conception of modality as a form of general variation to the representation of constructions in modern geometry, we see how varied the applications of this powerful new language can be.




Type Theory and Functional Programming


Book Description

This book explores the role of Martin-Lof s constructive type theory in computer programming. The main focus of the book is how the theory can be successfully applied in practice. Introductory sections provide the necessary background in logic, lambda calculus and constructive mathematics, and exercises and chapter summaries are included to reinforce understanding.




Twenty Five Years of Constructive Type Theory


Book Description

Per Martin-Löf's work on the development of constructive type theory has been of huge significance in the fields of logic and the foundations of mathematics. It is also of broader philosophical significance, and has important applications in areas such as computing science and linguistics. This volume draws together contributions from researchers whose work builds on the theory developed by Martin-Löf over the last twenty-five years. As well as celebrating the anniversary of the birth of the subject it covers many of the diverse fields which are now influenced by type theory. It is an invaluable record of areas of current activity, but also contains contributions from N. G. de Bruijn and William Tait, both important figures in the early development of the subject. Also published for the first time is one of Per Martin-Löf's earliest papers.




Theoretical Aspects of Computer Software


Book Description

TACS'91 is the first International Conference on Theoretical Aspects of Computer Science held at Tohoku University, Japan, in September 1991. This volume contains 37 papers and an abstract for the talks presented at the conference. TACS'91 focused on theoretical foundations of programming, and theoretical aspects of the design, analysis and implementation of programming languages and systems. The following range of topics is covered: logic, proof, specification and semantics of programs and languages; theories and models of concurrent, parallel and distributed computation; constructive logic, category theory, and type theory in computer science; theory-based systems for specifying, synthesizing, transforming, testing, and verifying software.




Basic Simple Type Theory


Book Description

Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.