Martingales and Financial Mathematics in Discrete Time


Book Description

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time. The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors. Martingales and Financial Mathematics in Discrete Time is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance




Stochastic Finance


Book Description

This book is an introduction to financial mathematics. The first part of the book studies a simple one-period model which serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Such models are typically incomplete: They involve intrinsic risks which cannot be hedged away completely. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. In addition to many corrections and improvements, this second edition contains several new sections, including a systematic discussion of law-invariant risk measures and of the connections between American options, superhedging, and dynamic risk measures.




Martingale Methods in Financial Modelling


Book Description

A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.




Lectures on Financial Mathematics


Book Description

This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage", the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged to work through the exercises throughout the book. The intended audience is students and other readers who have an undergraduate background in mathematics, including exposure to linear algebra, some advanced calculus, and basic probability. The book has been used in earlier forms with students in the MS program in Financial Mathematics at Florida State University, and is a suitable text for students at that level. Students who seek a second look at these topics may also find this book useful. Table of Contents: Overture: Single-Period Models / The General Discrete Model / The Fundamental Theorems of Asset Pricing / Forwards and Futures / Incomplete Markets




Stochastic Processes and Financial Mathematics


Book Description

The book provides an introduction to advanced topics in stochastic processes and related stochastic analysis, and combines them with a sound presentation of the fundamentals of financial mathematics. It is wide-ranging in content, while at the same time placing much emphasis on good readability, motivation, and explanation of the issues covered. Financial mathematical topics are first introduced in the context of discrete time processes and then transferred to continuous-time models. The basic construction of the stochastic integral and the associated martingale theory provide fundamental methods of the theory of stochastic processes for the construction of suitable stochastic models of financial mathematics, e.g. using stochastic differential equations. Central results of stochastic analysis such as the Itô formula, Girsanov's theorem and martingale representation theorems are of fundamental importance in financial mathematics, e.g. for the risk-neutral valuation formula (Black-Scholes formula) or the question of the hedgeability of options and the completeness of market models. Chapters on the valuation of options in complete and incomplete markets and on the determination of optimal hedging strategies conclude the range of topics. Advanced knowledge of probability theory is assumed, in particular of discrete-time processes (martingales, Markov chains) and continuous-time processes (Brownian motion, Lévy processes, processes with independent increments, Markov processes). The book is thus suitable for advanced students as a companion reading and for instructors as a basis for their own courses. This book is a translation of the original German 1st edition Stochastische Prozesse und Finanzmathematik by Ludger Rüschendorf, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com) and in a subsequent editing, improved by the author. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.




Lectures on Financial Mathematics


Book Description

This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage," the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged to work through the exercises throughout the book. The intended audience is students and other readers who have an undergraduate background in mathematics, including exposure to linear algebra, some advanced calculus, and basic probability. The book has been used in earlier forms with students in the MS program in Financial Mathematics at Florida State University, and is a suitable text for students at that level. Students who seek a second look at these topics may also find this book useful. Table of Contents: Overture: Single-Period Models / The General Discrete Model / The Fundamental Theorems of Asset Pricing / Forwards and Futures / Incomplete Markets




Financial Mathematics


Book Description

The book has been tested and refined through years of classroom teaching experience. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. This textbook provides complete coverage of discrete-time financial models that form the cornerstones of financial derivative pricing theory. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. Key features: In-depth coverage of discrete-time theory and methodology. Numerous, fully worked out examples and exercises in every chapter. Mathematically rigorous and consistent yet bridging various basic and more advanced concepts. Judicious balance of financial theory, mathematical, and computational methods. Guide to Material. This revision contains: Almost 200 pages worth of new material in all chapters. A new chapter on elementary probability theory. An expanded the set of solved problems and additional exercises. Answers to all exercises. This book is a comprehensive, self-contained, and unified treatment of the main theory and application of mathematical methods behind modern-day financial mathematics.




Discrete-Time Approximations and Limit Theorems


Book Description

Financial market modeling is a prime example of a real-life application of probability theory and stochastics. This authoritative book discusses the discrete-time approximation and other qualitative properties of models of financial markets, like the Black-Scholes model and its generalizations, offering in this way rigorous insights on one of the most interesting applications of mathematics nowadays.




Introduction to Stochastic Calculus Applied to Finance


Book Description

Since the publication of the first edition of this book, the area of mathematical finance has grown rapidly, with financial analysts using more sophisticated mathematical concepts, such as stochastic integration, to describe the behavior of markets and to derive computing methods. Maintaining the lucid style of its popular predecessor, this concise and accessible introduction covers the probabilistic techniques required to understand the most widely used financial models. Along with additional exercises, this edition presents fully updated material on stochastic volatility models and option pricing as well as a new chapter on credit risk modeling. It contains many numerical experiments and real-world examples taken from the authors' own experiences. The book also provides all of the necessary stochastic calculus theory and implements some of the algorithms using SciLab. Key topics covered include martingales, arbitrage, option pricing, and the Black-Scholes model.




Stochastic Analysis


Book Description

This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.