Biomedical Mass Transport and Chemical Reaction


Book Description

Teaches the fundamentals of mass transport with a unique approach emphasizing engineering principles in a biomedical environment Includes a basic review of physiology, chemical thermodynamics, chemical kinetics, mass transport, fluid mechanics and relevant mathematical methods Teaches engineering principles and mathematical modelling useful in the broad range of problems that students will encounter in their academic programs as well as later on in their careers Illustrates principles with examples taken from physiology and medicine or with design problems involving biomedical devices Stresses the simplification of problem formulations based on key geometric and functional features that permit practical analyses of biomedical applications Offers a web site of homework problems associated with each chapter and solutions available to instructors Homework problems related to each chapter are available from a supplementary website (




Mass Transfer with Chemical Reaction in Multiphase Systems


Book Description

The phenomenon of "mass transfer with chemical reaction" takes place whenever one phase is brought into contact with one or more other phases not in chemical equilibrium with it. This phenomenon has industrial, biological and physiological importance. In chemical process engineering, it is encountered in both separ ation processes and reaction engineering. In some cases, a chemical reaction may deliberately be employed for speeding up the rate of mass transfer and/or for increasing the capacity of the solvent; in other cases the multiphase reaction system is a part of the process with the specific aim of product formation. Finally, in some cases, for instance "distillation with chemical reaction", both objectives are involved. Although the subject is clearly a chemical engineering undertakin~, it requires often a good understanding of other subjects, such as chemistry and fluid mechanics etc., leading to publications in diversified areas. On the other har.d, the subject has always been a major field and one of the most fruitful for chemical engineers.




Basic Equations of the Mass Transport Through a Membrane Layer


Book Description

With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation







Simultaneous Mass Transfer and Chemical Reactions in Engineering Science


Book Description

Simultaneous Mass Transfer and Chemical Reactions in Engineering Science A comprehensive look at the basic science of diffusional process and mass transfer Mass transfer as a principle is an essential part of numerous unit operations in biomolecular, chemical, and process engineering; crystallization, distillation, and membrane separation processes, for example, use this important method. Given this significance – particularly in engineering design where these processes occur – understanding the design and analysis of such unit operations must begin with a basic understanding of how simultaneous mass transfer and the chemical reactions that influence these occurrences. It is also vital to be aware of the most up-to-date technologies for analyzing and predicting the phenomena. Given the significance of this process, Simultaneous Mass Transfer and Chemical Reactions in Engineering Science is an important resource as it introduces the reader to the complex subject of simultaneous mass transfer with biochemical and chemical reactions and gives them the tools to develop an applicable design. Analyzing the systems of simultaneous mass transfer and reactions is at the core of this book, as all known design approaches are carefully examined and compared. The volume also provides the reader with a working knowledge of the latest technologies – with a special focus on the open-sourced computer programming language R – and how these tools are an essential resource in quantitative assessment in analysis models. Simultaneous Mass Transfer and Chemical Reactions in Engineering Science provides a working knowledge of the latest information on simultaneous mass transfer and reactions by focusing on the analysis of this process, as well as discussing the existence and distinctive quality of the solutions to the Simultaneous Mass Transfer and Chemical Reactions in Engineering Science readers will also find: A theoretical basis of each design model that is carefully stated, compared, and assessed Carefully developed and established Existence and Uniqueness Theorems for a general design model Comprehensive coverage of how the programming language R may be used to analyze models Numerous examples and case studies that provide a working knowledge of simultaneous mass transfer and reactions Simultaneous Mass Transfer and Chemical Reactions in Engineering Science is a useful reference for students in chemical engineering, biotechnology, or chemistry, as well as professional process and chemical engineers.




Gas Transport in Porous Media


Book Description

This monograph gives an historical account of the development of the dusty-gas model for the description of gas transport in porous media, and describes the model and its applications in sufficient detail that it can be employed in engineering practice.




Transport Processes in Chemically Reacting Flow Systems


Book Description

Transport Processes in Chemically Reacting Flow Systems discusses the role, in chemically reacting flow systems, of transport processes—particularly the transport of momentum, energy, and (chemical species) mass in fluids (gases and liquids). The principles developed and often illustrated here for combustion systems are important not only for the rational design and development of engineering equipment (e.g., chemical reactors, heat exchangers, mass exchangers) but also for scientific research involving coupled transport processes and chemical reaction in flow systems. The book begins with an introduction to transport processes in chemically reactive systems. Separate chapters cover momentum, energy, and mass transport. These chapters develop, state, and exploit useful quantitative ""analogies"" between these transport phenomena, including interrelationships that remain valid even in the presence of homogeneous or heterogeneous chemical reactions. A separate chapter covers the use of transport theory in the systematization and generalization of experimental data on chemically reacting systems. The principles and methods discussed are then applied to the preliminary design of a heat exchanger for extracting power from the products of combustion in a stationary (fossil-fuel-fired) power plant. The book has been written in such a way as to be accessible to students and practicing scientists whose background has until now been confined to physical chemistry, classical physics, and/or applied mathematics.




Handbook of Chemical Mass Transport in the Environment


Book Description

A comprehensive account of the state of the science of environmental mass transportEdited by Louis J. Thibodeaux and Donald Mackay, renowned experts in this field, the Handbook of Chemical Mass Transport in the Environment covers those processes which are critically important for assessing chemical fate, exposure, and risk. In a comprehensive and a




Transport Phenomena for Chemical Reactor Design


Book Description

Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp. Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including: Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design.




Biomedical Mass Transport and Chemical Reaction


Book Description

Teaches the fundamentals of mass transport with a unique approach emphasizing engineering principles in a biomedical environment Includes a basic review of physiology, chemical thermodynamics, chemical kinetics, mass transport, fluid mechanics and relevant mathematical methods Teaches engineering principles and mathematical modelling useful in the broad range of problems that students will encounter in their academic programs as well as later on in their careers Illustrates principles with examples taken from physiology and medicine or with design problems involving biomedical devices Stresses the simplification of problem formulations based on key geometric and functional features that permit practical analyses of biomedical applications Offers a web site of homework problems associated with each chapter and solutions available to instructors Homework problems related to each chapter are available from a supplementary website (