Mastering Quantum Mechanics


Book Description

A complete overview of quantum mechanics, covering essential concepts and results, theoretical foundations, and applications. This undergraduate textbook offers a comprehensive overview of quantum mechanics, beginning with essential concepts and results, proceeding through the theoretical foundations that provide the field’s conceptual framework, and concluding with the tools and applications students will need for advanced studies and for research. Drawn from lectures created for MIT undergraduates and for the popular MITx online course, “Mastering Quantum Mechanics,” the text presents the material in a modern and approachable manner while still including the traditional topics necessary for a well-rounded understanding of the subject. As the book progresses, the treatment gradually increases in difficulty, matching students’ increasingly sophisticated understanding of the material. • Part 1 covers states and probability amplitudes, the Schrödinger equation, energy eigenstates of particles in potentials, the hydrogen atom, and spin one-half particles • Part 2 covers mathematical tools, the pictures of quantum mechanics and the axioms of quantum mechanics, entanglement and tensor products, angular momentum, and identical particles. • Part 3 introduces tools and techniques that help students master the theoretical concepts with a focus on approximation methods. • 236 exercises and 286 end-of-chapter problems • 248 figures




Mastering Mechanics I Using MATLAB 5


Book Description

For introductory mechanical engineering courses using MATLAB. This hands-on approach provides a unique and practical introduction to MATLAB by going beyond simple explanations of commands and demonstrating how to actually program. It is intended to serve two purposes. The first is to present a new toolbox for the most common statics and strength of materials problems. The second is to show, by example, how to create function files to solve generic problems. These function files expand the usability of MATLAB into new areas of study.




No-Nonsense Classical Mechanics


Book Description

Learning classical mechanics doesn’t have to be hard What if there was a way to learn classical mechanics without all the usual fluff? What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Classical Mechanics now exists. What will you learn from this book? Get to know all fundamental mechanics concepts — Grasp why we can describe classical mechanics using the Lagrangian formalism, the Newtonian formalism, or the Hamiltonian formalism and how these frameworks are connected.Learn to describe classical mechanics mathematically — Understand the meaning and origin of the most important equations: Newton's second law, the Euler-Lagrange equation and Hamilton's equations.Master the most important classical mechanics systems — Read fully annotated, step-by-step calculations and understand the general algorithm we use to describe them.Get an understanding you can be proud of — Learn about beautiful and deep insights like Noether's theorem or Liouville's theorem and how classical mechanics emerges in a proper limit of special relativity, quantum mechanics and general relativity. No-Nonsense Classical Mechanics is the most student-friendly book on classical nechanics ever written. Here’s why. First of all, it's is nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”.Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from.The book contains no fluff since unnecessary content quickly leads to confusion. Instead, it ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on in.Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.




Mechanics


Book Description

This classic introductory text features hundreds of applications and design problems that illuminate fundamentals of trusses, loaded beams and cables, and related areas. Includes 334 answered problems.




Mechanics of Solids and Structures, Second Edition


Book Description

A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.




Mastering the Mechanics


Book Description

Easy-to-use editing lessons that focus on grammar, spelling, punctuation, and conventions in writing.




Mastering Calculations in Linear and Nonlinear Mechanics


Book Description

This book deals with the management of calculations in linear and nonlinear mechanics. Particular attention is given to error estimators and indicators for structural analysis. The accent is on the concept of error in constitutive relation. An important part of the work is also devoted to the utilization of the error estimators involved in a calculation, beginning with the parameters related to the mesh. Many of the topics are taken from the most recent research by the authors: local error estimators, extention of the concept of error in constitutive relation to nonlinear evolution problems and dynamic problems, adaptive improvement of calculations in nonlinear mechanics. This work is intended for all those interested in mechanics: students, researchers and engineers concerned with the construction of models as well as their simulation for industrial purposes.




Mechanics of Materials


Book Description

Sets the standard for introducing the field of comparative politics This text begins by laying out a proven analytical framework that is accessible for students new to the field. The framework is then consistently implemented in twelve authoritative country cases, not only to introduce students to what politics and governments are like around the world but to also understand the importance of their similarities and differences. Written by leading comparativists and area study specialists, Comparative Politics Today helps to sort through the world's complexity and to recognize patterns that lead to genuine political insight. MyPoliSciLab is an integral part of the Powell/Dalton/Strom program. Explorer is a hands-on way to develop quantitative literacy and to move students beyond punditry and opinion. Video Series features Pearson authors and top scholars discussing the big ideas in each chapter and applying them to enduring political issues. Simulations are a game-like opportunity to play the role of a political actor and apply course concepts to make realistic political decisions. ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products. Packages Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase. Used or rental books If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code. Access codes Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.




Structure and Interpretation of Classical Mechanics, second edition


Book Description

The new edition of a classic text that concentrates on developing general methods for studying the behavior of classical systems, with extensive use of computation. We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated. This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.




Mastering the Mechanics


Book Description

Easy-to-use editing lessons that focus on grammar, spelling, punctuation, and conventions in writing.