Mathematical Analysis


Book Description

This volume contains three articles: "Asymptotic methods in the theory of ordinary differential equations" b'y V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryuk, "The theory of best ap proximation in Dormed linear spaces" by A. L. Garkavi, and "Dy namical systems with invariant measure" by A. 'VI. Vershik and S. A. Yuzvinskii. The first article surveys the literature on linear and non linear singular asymptotic problems, in particular, differential equations with a small parameter. The period covered by the survey is primarily 1962-1967. The second article is devoted to the problem of existence, characterization, and uniqueness of best approximations in Banach spaces. One of the chapters also deals with the problem of the convergence of positive operators, inasmuch as the ideas and methods of this theory are close to those of the theory of best ap proximation. The survey covers the literature of the decade 1958-1967. The third article is devoted to a comparatively new and rapid ly growing branch of mathematics which is closely related to many classical and modern mathematical disciplines. A survey is given of results in entropy theory, classical dynamic systems, ergodic theorems, etc. The results surveyed were primarily published during the period 1956-1967.




Finite Fields: Theory and Computation


Book Description

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR.




Interactive Decision Maps


Book Description

Since the volume may be of interest to a broad variety of people, it is arranged in parts that require different levels of mathematical background. Part I can be assessed by those interested in the application of visualization methods in decision making. In Part II computational methods are introduced in a relatively simple form. Part III is written for readers in applied mathematics interested in the theoretical basis of modern optimization.







Sums of Independent Random Variables


Book Description

The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity




Liet. Matem. Rink


Book Description




Descriptive Theory of Sets and Functions. Functional Analysis in Semi-ordered Spaces


Book Description

This book presents articles of L.V. Kantorovich on the descriptive theory of sets and function and on functional analysis in semi-ordered spaces, to demonstrate the unity of L.V. Kantorovich's creative research. It also includes two papers on the "extension of Hilbert space".




Generalized Analytic Functions


Book Description

Generalized Analytic Functions is concerned with foundations of the general theory of generalized analytic functions and some applications to problems of differential geometry and theory of shells. Some classes of functions and operators are discussed, along with the reduction of a positive differential quadratic form to the canonical form. Boundary value problems and infinitesimal bendings of surfaces are also considered. Comprised of six chapters, this volume begins with a detailed treatment of various problems of the general theory of generalized analytic functions as as well as boundary value problems. The reader is introduced to some classes of functions and functional spaces, with emphasis on functions of two independent variables. Subsequent chapters focus on the problem of reducing a positive differential quadratic form to the canonical form; basic properties of solutions of elliptic systems of partial differential equations of the first order, in a two-dimensional domain; and some boundary value problems for an elliptic system of equations of the first order and for an elliptic equation of the second order, in a two-dimensional domain. The final part of the book deals with problems of the theory of surfaces and the membrane theory of shells. This book is intended for students of advanced courses of the mechanico-mathematical faculties, postgraduates, and research workers.




Limit Theorems for the Riemann Zeta-Function


Book Description

The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.