Handbook of Recycling


Book Description

Winner of the International Solid Waste Association's 2014 Publication Award, Handbook of Recycling is an authoritative review of the current state-of-the-art of recycling, reuse and reclamation processes commonly implemented today and how they interact with one another. The book addresses several material flows, including iron, steel, aluminum and other metals, pulp and paper, plastics, glass, construction materials, industrial by-products, and more. It also details various recycling technologies as well as recovery and collection techniques. To completely round out the picture of recycling, the book considers policy and economic implications, including the impact of recycling on energy use, sustainable development, and the environment. With contemporary recycling literature scattered across disparate, unconnected articles, this book is a crucial aid to students and researchers in a range of disciplines, from materials and environmental science to public policy studies. - Portrays recent and emerging technologies in metal recycling, by-product utilization and management of post-consumer waste - Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes - Uses examples from current professional and industrial practice, with policy and economic implications




Tire Waste and Recycling


Book Description

Tire Waste and Recycling takes a methodical approach to the recycling of tires, providing a detailed understanding on how to manage, process, and turn waste tires into valuable materials and industrial applications. Sections cover fundamental aspects such as tire use, composition, trends, legislation, the current global situation, the possibilities for moving towards a circular economy, lifecycle options, treatment methods, and opportunities for re-use, recycling and recovery. Subsequent sections of the book focus on specific technologies that enable the utilization of waste tires in the development of high value materials and advanced applications. Finally, the future of tire recycling is considered. This is an essential resource for scientists, R&D professionals, engineers and manufacturers working in the tire, rubber, waste, recycling, automotive and aerospace industries. In academia, the book will be of interest to researchers and advanced scientists across rubber science, polymer science, materials engineering, environmental science, chemistry and chemical engineering. - Offers systematic coverage of tire recycling, covering composition, lifecycle, processing options, material developments and latest technologies - Explains end-of-life-options in detail, considering approaches and methods for reduction, re-use, recycling and recovery - Explores key application and product areas for recycled tire materials, from civil engineering, sports and leisure, to roads and transport, construction, automotive, and many more




Recycling and Reuse of Materials and Their Products


Book Description

This important book is an overall analysis of different innovative methods and ways of recycling in connection with various types of materials. It aims to provide a basic understanding about polymer recycling and its reuse as well as presents an in-depth look at various recycling methods. It provides a thorough knowledge about the work being done i




Solid Waste Recycling and Processing


Book Description

Solid Waste Recycling and Processing, Second Edition, provides best-practice guidance to solid waste managers and recycling coordinators. The book covers all aspects of solid waste processing, volume reduction, and recycling, encompassing typical recyclable materials (paper, plastics, cans, and organics), construction and demolition debris, electronics, and more. It includes techniques, technologies, and programs to help maximize customer participation rates and revenues, as well as to minimize operating costs. The book is packed with lessons learned by the author during the implementation of the most successful programs worldwide, and includes numerous case studies showing how different systems work in different settings. This book also takes on industry debates such as the merits of curbside-sort versus single-stream recycling and the use of advanced technology in materials recovery facilities. It provides key facts and figures, and brief summaries of legislation in the United States, Europe, and Asia. An extensive glossary demystifies the terminology and acronyms used in different sectors and geographies. The author also explains emerging concepts in recycling such as zero waste, sustainability, LEED certification, and pay-as-you-throw, and places waste management and recycling in wider economic, environmental (sustainability), political, and societal contexts. - Covers single- and mixed-waste streams - Evaluates the technologies and tradeoffs of recycling of materials vs. integrated solutions, including combustion and other transformational options - Covers recycling as part of the bigger picture of solid waste management, processing and disposal




WEEE Recycling


Book Description

WEEE Recycling: Research, Development, and Policies covers policies, research, development, and challenges in recycling of waste electrical and electronic equipment (WEEE). The book introduces WEEE management and then covers the environmental, economic, and societal applications of e-waste recycling, focusing on the technical challenges to designing efficient and sustainable recycling processes—including physical separation, pyrometallurgical, and hydrometallurgical processes. The development of processes for recovering strategic and critical metals from urban mining is a priority for many countries, especially those having few available ores mining. - Describes the two metallurgical processes—hydro- and pyro-metallurgy—and their application in recycling of metals - Provides a life cycle analysis in the WEEE recycling of metals - Outlines how to determine economic parameters in the recycling of waste metals - Discusses the socio economic and environmental implication of metal recycling




Material Recycling


Book Description

The presently common practice of wastes' land-filling is undesirable due to legislation pressures, rising costs and the poor biodegradability of commonly used materials. Therefore, recycling seems to be the best solution. The purpose of this book is to present the state-of-the-art for the recycling methods of several materials, as well as to propose potential uses of the recycled products. It targets professionals, recycling companies, researchers, academics and graduate students in the fields of waste management and polymer recycling in addition to chemical engineering, mechanical engineering, chemistry and physics. This book comprises 16 chapters covering areas such as, polymer recycling using chemical, thermo-chemical (pyrolysis) or mechanical methods, recycling of waste tires, pharmaceutical packaging and hardwood kraft pulp and potential uses of recycled wastes.




Handbook of Recycled Concrete and Demolition Waste


Book Description

The civil engineering sector accounts for a significant percentage of global material and energy consumption and is a major contributor of waste material. The ability to recycle and reuse concrete and demolition waste is critical to reducing environmental impacts in meeting national, regional and global environmental targets. Handbook of recycled concrete and demolition waste summarises key recent research in achieving these goals.Part one considers techniques for managing construction and demolition waste, including waste management plans, ways of estimating levels of waste, the types and optimal location of waste recycling plants and the economics of managing construction and demolition waste. Part two reviews key steps in handling construction and demolition waste. It begins with a comparison between conventional demolition and construction techniques before going on to discuss the preparation, refinement and quality control of concrete aggregates produced from waste. It concludes by assessing the mechanical properties, strength and durability of concrete made using recycled aggregates. Part three includes examples of the use of recycled aggregates in applications such as roads, pavements, high-performance concrete and alkali-activated or geopolymer cements. Finally, the book discusses environmental and safety issues such as the removal of gypsum, asbestos and alkali-silica reaction (ASR) concrete, as well as life-cycle analysis of concrete with recycled aggregates.Handbook of recycled concrete and demolition waste is a standard reference for all those involved in the civil engineering sector, as well as academic researchers in the field. - Summarises key recent research in recycling and reusing concrete and demolition waste to reduce environmental impacts and meet national, regional and global environmental targets - Considers techniques for managing construction and demolition waste, including waste management plans, ways of estimating levels of waste, the types and optimal location of waste recycling plants - Reviews key steps in handling construction and demolition waste




Waste Electrical and Electronic Equipment Recycling


Book Description

Water Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods provides data regarding the implementation of aqueous methods of processing of WEEEs at the industrial level. Chapters explore points-of-view of worldwide researchers and research project managers with respect to new research developments and how to improve processing technologies. The text is divided into two parts, with the first section addressing the new research regarding the hydrometallurgical procedures adopted from minerals processing technologies. Other sections cover green chemistry, bio-metallurgy applications for WEEE treatment and the current developed aqueous methods at industrial scale. A conclusion summarizes existing research with suggestions for future actions. - Provides a one-stop reference for hydrometallurgical processes of metal recovery from WEEE - Includes methods presented through intended applications, including waste printed circuit boards, LCD panels, lighting and more - Contains suggestions and recommendations for future actions and research prospects




Electronic Waste and Printed Circuit Board Recycling Technologies


Book Description

This book covers state-of-the-art technologies, principles, methods and industrial applications of electronic waste (e-waste) and waste PCB (WPCB) recycling. It focuses on cutting-edge mechanical separation processes and pyro- and hydro-metallurgical treatment methods. De-soldering, selective dismantling, and dry separation methods (including the use of gravity, magnetic and electrostatic techniques) are discussed in detail, noting the patents related to each. The volume discusses the available industrial equipment and plant flowsheets used for WPCB recycling in detail, while addressing potential future directions of the field. This practical, comprehensive, and multidisciplinary reference will appeal to professionals throughout global industrial, academic and government institutions interested in addressing the growing problem of e-waste. Covers principles, methods and industrial applications of e-waste and PCB recycling; Details state-of-the-art mechanical separation processes and pyro- and hydro-metallurgical treatment methods; Describes the available industrial equipment used and plant flowsheets for PCB recycling and addresses potential future developments of this important field.




Climate Benefits of Material Recycling


Book Description

The purpose of this project is to compare emissions of greenhouse gases from material recycling with those from virgin material production, both from a material supply perspective and from a recycling system perspective. The method for estimating emissions and climate benefits is based on a review, followed by a selection, of the most relevant publications on life cycle assessment (LCA) of materials for use in Denmark, Norway and Sweden. The proposed averages show that emissions from material recycling are lower in both perspectives, comparing either material supply or complete recycling systems. The results can be used by companies and industry associations in Denmark, Norway and Sweden to communicate the current climate benefits of material recycling in general. They may also contribute to discussions on a societal level, as long as their average and historic nature is recognised.