Material Study of the Steel Reinforced Elastomeric Bridge Bearings


Book Description

Steel laminated elastomeric bearings are widely used in concrete bridges due to their low cost and long history of good structural performance. However, elastomeric bearings have not been used extensively in steel bridge systems. Compared to concrete bridges, steel bridge systems generally have longer spans and may have significant support skew and horizontally curved geometry that results in significant demands on the bearings at the supports to accommodate rotations and complex bridge movements from both thermal loads and daily truck traffic. For such bridges, more costly pot bearings are normally used. The research described in this dissertation was part of a larger study investigating the possibility of using elastomeric bearings in such higher demand applications. More specifically, the research in this dissertation investigated issues related to material properties of the elastomer in larger bearings designed for higher demand applications. This dissertation first introduces a new testing methodology, referred to as the Dual Shear Test (DST), which is able to measure the elastomer material response in shear for samples cut directly from of bearings with different dimensions. The proposed geometry of the DST specimen significantly reduces the cost and effort compared to the more conventional Quad Shear Test, and also allows the measurement of shear response at very large shear strain levels. Based on a systematic experimental study, the accuracy and reliability of this new testing methodology was demonstrated. Different hyper-elastic material models were investigated in this dissertation that can be used in finite element studies of elastomeric bearings. These models were calibrated based on the new shear test methodology. With these material models, DST results can be interpreted and entered into finite element models. Using the Dual Shear Test, four bearings of different dimensions were tested. The variability of the shear modulus at different locations within the bearings was investigated. These tests were conducted to address concerns that larger bearings may have greater variability in elastomer material properties throughout the bearing. These tests showed there is somewhat greater variability in shear modulus in larger bearings and thicker bearings, although this variability was not significantly larger compared to smaller bearings. Finally, this research also investigated how the shear modulus of the elastomer changes as the temperature decreases. Results of tests showed that the shear modulus increases significantly as temperature decreases. This effect can be significant when analyzing the behavior of bridge bearings under temperature variations.




An Experimental Study of Elastomeric Bridge Bearings with Design Recommendations


Book Description

The purpose of this study was to analyze elastomeric bearing performance on the basis of elastomer hardness, shape factor, reinforcing shim orientation, degree of taper and compressive stress level with the goal of developing a simple design procedure which standardizes as many of those parameters as possible. Particular emphasis was placed on comparing the behavior of flat and tapered bearings. Experimentation included shear, compressive, and rotational stiffness tests, shear and compression fatigue loading, long-term compressive loading, and tests to determine compressive stress limits.




Behavioral Study of Steel Reinforced Elastomeric Bearings in Bridges


Book Description

This thesis primarily predicts the compressive and rotational stiffness of the elastomeric bearing and exams the behavior of elastomeric bearing under compression, rotation, and combination of shear, compression, and rotational loading. The primary purpose of an elastomeric bearing is to distribute the superstructure loads to the substructure. The elastomers used in the elastomeric bearings undergo deformation to allow necessary movement and rotation of the superstructure. Thus, abstract analysis of the behavior of the elastomeric bearing is required. With that end in view, three-dimensional finite element models are developed using the software Abaqus and the results from the finite element analysis are validated with the experimental data from previous literature. The validated finite element models are used for the calculation of compressive and rotational stiffness of the elastomeric bearings and comparisons are made with the analytical closed-form solutions and current code provision (AASHTO, 2017). Moreover, the bearings are subjected to compression, rotation, and a combination of shear, compression, and rotational loading for the prediction of deformed shape, compressive stress, shear stresses, and shear strains.













Analysis of Elastomeric Bridge Bearings


Book Description

A two-dimensional nonlinear p-version finite element method is developed for the analysis of boundary value problems relevant to elastomeric bridge bearings. The method incorporates polynomial shape functions of the hierarchic type for the modeling of large-deformations rubber elasticity. In addition, a frictional-contact algorithm based on a penalty formulation and suitable for the interaction of the pad with rigid flat surfaces is derived and implemented. The J sub 2 flow theory with isotropic hardening is utilized to model the reinforcing steel as a bilinear elastoplastic material. Examples are presented to illustrate the performance of the element and some guidelines for the selection of appropriate orders of interpolation and integration rules. The results of a study performed to examine the effects of several design parameters of the bearing are presented. Comparisons with experimental findings are shown. A dynamic lumped model for the walking of the bearing is developed. Viscous frictional interfaces with the girder and the abutment are included. Several cases are analyzed to investigate the factors that affect this phenomenon.







Mechanics of Rubber Bearings for Seismic and Vibration Isolation


Book Description

Widely used in civil, mechanical and automotive engineering since the early 1980s, multilayer rubber bearings have been used as seismic isolation devices for buildings in highly seismic areas in many countries. Their appeal in these applications comes from their ability to provide a component with high stiffness in one direction with high flexibility in one or more orthogonal directions. This combination of vertical stiffness with horizontal flexibility, achieved by reinforcing the rubber by thin steel shims perpendicular to the vertical load, enables them to be used as seismic and vibration isolators for machinery, buildings and bridges. Mechanics of Rubber Bearings for Seismic and Vibration Isolation collates the most important information on the mechanics of multilayer rubber bearings. It explores a unique and comprehensive combination of relevant topics, covering all prerequisite fundamental theory and providing a number of closed-form solutions to various boundary value problems as well as a comprehensive historical overview on the use of isolation. Many of the results presented in the book are new and are essential for a proper understanding of the behavior of these bearings and for the design and analysis of vibration or seismic isolation systems. The advantages afforded by adopting these natural rubber systems is clearly explained to designers and users of this technology, bringing into focus the design and specification of bearings for buildings, bridges and industrial structures. This comprehensive book: includes state of the art, as yet unpublished research along with all required fundamental concepts; is authored by world-leading experts with over 40 years of combined experience on seismic isolation and the behavior of multilayer rubber bearings; is accompanied by a website at www.wiley.com/go/kelly The concise approach of Mechanics of Rubber Bearings for Seismic and Vibration Isolation forms an invaluable resource for graduate students and researchers/practitioners in structural and mechanical engineering departments, in particular those working in seismic and vibration isolation.




Guide Specifications for Seismic Isolation Design


Book Description

This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.