Materials and Measurements in Molecular Electronics


Book Description

Materials and Measurements in Molecular Electronics presents new developments in one of the most promising areas of electronics technology for the 21st century. Conjugated polymers, carbon clusters, and many other new molecular materials have been synthesized or discovered in recent years, and some now are on the threshold of commercial application. In the development of molecular materials, detailed knowledge of the structures and electronic states of molecular aggregates is essential. The focus of this book is on the development of new molecular materials and measuring techniques based on modern spectroscopy; included are such topics as Langmuir-Blodgett films, cluster materials, organic conductors, and conjugated electroluminescent polymers.




Molecular-Scale Electronics


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Molecular-Scale Electronics


Book Description

Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.




Molecular Electronics


Book Description

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.




Lower-Dimensional Systems and Molecular Electronics


Book Description

This volume represents the written account of the NATO Advanced Study Institute "Lower-Dimensional Systems and Molecular Electronics" held at Hotel Spetses, Spetses Island, Greece from 12 June to 23 June 1989. The goal of the Institute was to demonstrate the breadth of chemical and physical knowledge that has been acquired in the last 20 years in inorganic and organic crystals, polymers, and thin films, which exhibit phenomena of reduced dimensionality. The interest in these systems started in the late 1960's with lower-dimensional inorganic conductors, in the early 1970's with quasi-one-dimensional crystalline organic conductors. which by 1979 led to the first organic superconductors, and, in 1977, to the fITSt conducting polymers. The study of monolayer films (Langmuir-Blodgett films) had progressed since the 1930's, but reached a great upsurge in . the early 1980's. The pursuit of non-linear optical phenomena became increasingly popular in the early 1980's, as the attention turned from inorganic crystals to organic films and polymers. And in the last few years the term "moleculw' electronics" has gained ever-increasing acceptance, although it is used in several contexts. We now have organic superconductors with critical temperatures in excess of 10 K, conducting polymers that are soluble and processable, and used commercially; we have films of a few monolayers that have high in-plane electrical conductivity, and polymers that show great promise in photonics; we even have a few devices that function almost at the molecular level.




Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)


Book Description

Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.




Printed Organic and Molecular Electronics


Book Description

Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.




Organic and Molecular Electronics


Book Description

An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.




Single-Molecule Electronics


Book Description

This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.