Materials Processing in High Gravity


Book Description

There are two motives for studying materials processing in centrifuges. First, such research improves our understanding of the influence of acceleration and convection on materials processing. Second, there are commercial opportunities for production of unique and improved materials that cannot be prepared under normal earth conditions or in space. Through a combination of experiments and theory, we are gaining an understanding of centrifugation on phenomena of importance to materials processing. We find that it is necessary to consider not only acceleration, but also the Corio lis effect and the variation of acceleration with position. As one consequence, the vigor of buoyancy-driven convection is sometimes increased by centrifugation and sometimes decreased. Similarly, the tendency of the convection to become unstable or oscillatory may either be increased or decreased by centrifugation. On the other hand, the observed effects of centrifugation on product quality have largely gone unexplained. This volume constitutes the proceedings of The Second International Workshop on Materials Processing at High Gravity, hosted by Clarkson University in June of 1993. The concept for a workshop on materials processing in centrifuges was born at a series of informal meetings held in Paris in 1990. The First International Workshop on Materials Processing at High Gravity was held in May of 1991 in Dubna, USSR, on the banks of the Volga River. The proceedings of this workshop was published in 1992 as a special issue of the Journal of Crystal Growth.




Processing by Centrifugation


Book Description

This volume constitutes the proceedings of the Fourth International Workshop on Materials Processing at High Gravity, held at Clarkson University, May 29 to June 2, 2000. There were 73 attendees from 16 countries. Since the topics extended well beyond materials processing, it was felt appropriate to name this proceedings "Centrifugal Processing." Processing by Centrifugation includes the traditional bench-scale centrifuges, as well as all rotating systems utilizing the centrifugal and Coriolis forces to provide unique performance. Centrifugation led to the formation of sticky porous Teflon membranes, as well as improved polymeric solar cells. Centrifugation on large equipment improved the chemical vapor deposition of diamond films, influenced the growth and dissolution of semiconductor crystals, and elucidated the influence of gravity on coagulation of colloidal Teflon. A million g centrifuge was constructed and used to study sedimentation in solids and to prepare compositionally graded materials and new phases. Rotation of a pipe about its axis allowed the casting of large-diameter metal alloy pipes as well as coating the interior of pipes with a cermet utilizing self-propagating high-temperature synthesis. Such coatings are highly corrosion and erosion resistant. Flow on a rotating disk was shown to be useful for process intensification, such as large-scale manufacturing of nano-particles, polymerization reactions, and heat & mass transfer. Several theoretical studies dealt with the influence of rotation on fluid convection on surfaces and in pipes, tubes, and porous media. These have applications to integrated-circuit chip manufacturing, alloy casting, oil production, crystal growth, and the operation of rotating machinery.




Centrifugal Materials Processing


Book Description

It is not good to have zeal without knowledge • . . . Book of Proverbs This volume constitutes the proceedings of the Third International Workshop on Materials Processing at High Gravity. It offers the latest results in a new field with immense potential for commercialization, making this book a vital resource for research and development professionals in industry, academia and government. We have titled the proceedings Centrifugal Materials Processing to emphasize that centrifugation causes more than an increase in acceleration. It also introduces the Coriolis force and a gradient of acceleration, both of which have been discovered to play important roles in materials processing. The workshop was held June 2-8, 1996 on the campus of Clarkson University in Potsdam, New York, under the sponsorship of Corning Corporation and the International Center for Gravity Materials Science and Applications. The meeting was very productive and exciting, with energetic discussions of the latest discoveries in centrifugal materials processing, continuing the atmosphere of the first workshop held in 1991 at Dubna (Russia) and the second workshop held in 1993 in Potsdam, New York. Results and research plans were presented for a wide variety of centrifugal materials processing, including directional solidification of semiconductors, crystallization of high Tc superconductors, growth of diamond thin films, welding, alloy casting, solution behavior and growth, protein crystal growth, polymerization, and flow behavior. Also described were several centrifuge facilities that have been constructed for research, with costs beginning at below $1000.










Laser Material Processing


Book Description

Laser Material Processing (2nd ed) by William M Steen is an updated and expanded version of the original which sold very well with reprints in 1994 and 1996. This new edition includes a whole extra chapter - Rapid Prototyping and Low Volume Manufacture - and updates other sections such as those dealing with types of industrial lasers and new applications, and recent developments in Surface Treatment and In-Process Sensing. It comprises some addtional 60-80 pages whilst retaining the value of the original edition. It provides the reader with an understanding of laser process mechanisms, methods of application, automation and In-Process Sensing and industrial potential. The use of Patrick Wright's humorous cartoons and the many diagrams and tables to illustrate points make it a very useful and lively reference guide for students at all stages. Since laser technology is a rapidly changing field this new updated and expanded version will be particularly topical.




Combustion Synthesis


Book Description

Combustion Synthesis: Processing and Materials provides a comprehensive introduction to combustion synthesis, from fundamentals to applications. The book offers an up-to-date reference for both researchers who have already been working on combustion synthesis and those entering this field. Focusing specifically on the materials science and engineering dimensions of combustion synthesis, the book thoroughly explores the most important processes and materials under investigation today. It offers a comprehensive overview of the field to beginners, while experienced readers will find detailed explanations and up-to-date descriptions of the state of the art of combustion synthesis, focused on a range of vital processes and materials. - Offers a logically organized framework of knowledge of combustion synthesis, from fundamentals to applications - Discusses the most relevant topics in combustion synthesis, including recent results - Caters specifically to materials scientists and engineers by focusing on the most important processes and materials




Transport Phenomena in Porous Media II


Book Description

Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.




Laser Material Processing


Book Description

The informal style of Laser Material Processing (4th Edition) will guide you smoothly from the basics of laser physics to the detailed treatment of all the major materials processing techniques for which lasers are now essential. • Helps you to understand how the laser works and to decide which laser is best for your purposes. • New chapters on laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing reflect the changes in the field since the last edition, updating and completing the range of practical knowledge about the processes possible with lasers already familiar to established users of this well-known text. • Provides a firm grounding in the safety aspects of laser use. • Now with end-of-chapter exercises to help students assimilate information as they learn. • The authors’ lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford which will bring a smile to your face and ease the learning process.




Intensification of Liquid–Liquid Processes


Book Description

Explore and review novel techniques for intensifying transport and reaction in liquid-liquid and related systems with this essential toolkit. Topics include discussion of the principles of process intensification, the nexus between process intensification and sustainable engineering, and the fundamentals of liquid-liquid contacting, from an expert with over forty-five years' experience in the field. Providing promising directions for investment and for new research in process intensification, in addition to a unique review of the fundamentals of the topic, this book is the perfect guide for senior undergraduate students, graduate students, developers, and research staff in chemical engineering and biochemical engineering.