Materials Science: A Field of Diverse Industrial Applications


Book Description

Materials Science: A Field of Diverse Industrial Applications provides a comprehensive overview of recent developments in new materials and their applications across various fields. With ten chapters from reputed experts in materials chemistry, the book covers a wide range of topics including thin-film nanomaterials (including chalcogenide, zinc oxide and barium fluoride thin films), multiferroic nanoceramics, synthetic nanofibers, and polymer electrolytes. The content is divided into three sections, covering modified materials, functionalized nanomaterials, and the role of nanomaterials and modified materials in waste removal, chemical synthesis, and energy production. This book is an essential resource for researchers, scientists, and professionals in materials science, nanotechnology, and related fields who want to stay updated with recent advancements and their industrial applications. It also serves as a reference for advanced materials science courses.




Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




Materials


Book Description

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




Composites and Advanced Materials for Industrial Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase their applications across different industries. Composites and Advanced Materials for Industrial Applications is a critical scholarly resource that examines recent advances in the field of application of composite materials. Featuring coverage on a broad range of topics such as nanocomposites, hybrid composites, and fabrication techniques, this book is a vital reference source for engineers, academics, researchers, students, professionals, and practitioners seeking current research on improvements in manufacturing processes and developments of new analytical and testing methods.




Role of Materials Science in Food Bioengineering


Book Description

The Role of Materials Science in Food Bioengineering, Volume 19 in the Handbook of Food Bioengineering, presents an up-to-date review of the most recent advances in materials science, further demonstrating its broad applications in the food industry and bioengineering. Many types of materials are described, with their impact in food design discussed. The book provides insights into a range of new possibilities for the use of materials and new technologies in the field of food bioengineering. This is an essential reference on bioengineering that is not only ideal for researchers, scientists and food manufacturers, but also for students and educators. - Discusses the role of material science in the discovery and design of new food materials - Reviews the medical and socioeconomic impact of recently developed materials in food bioengineering - Includes encapsulation, coacervation techniques, emulsion techniques and more - Identifies applications of new materials for food safety, food packaging and consumption - Explores bioactive compounds, polyphenols, food hydrocolloids, nanostructures and other materials in food bioengineering




Green Chemical Synthesis with Microwaves and Ultrasound


Book Description

Green Chemical Synthesis with Microwaves and Ultrasound A guide to the efficient and sustainable synthesis of organic compounds Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. Green Chemical Synthesis with Microwaves and Ultrasound provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. Green Chemical Synthesis with Microwaves and Ultrasound readers will also find: Introduction to the key equipment and tools of green chemical synthesis Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more An authorial team with immense experience in environmentally friendly organic chemical production Green Chemical Synthesis with Microwaves and Ultrasound is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.







Composite Materials


Book Description

The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.