Polymer Science and Nanotechnology


Book Description

Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them




Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




Materials Science: Nanotechnology and Applications


Book Description

Prompted by the substantial impact of nanoscience and nanotechnology on the diverse materials, metals and minerals being used by over six billion people on the disturbingly overcrowding, increasingly mobile and energy guzzling planet, the author has attempted to produce a readable and comprehensive outline of the physics, chemistry, biology and engineering dimensions and processes relating to the exploitation of various kinds of materials, nanomaterials and nanoparticles, with special reference to carbon-based and silicon-based materials. The study introduces the reader to novel, superfunctional and composite materials, metamaterials, electronics, electrets, carbon nanotubes, nanowires, molecular transistors, and graphene currently attracting research focus. Besides its overall utility for all scientists and engineers, the monograph would serve as a supplementary textbook for advanced courses in several areas of engineering, physics, chemistry, nanotechnology, pharmaceutical biotechnology and biomedicine in traditional universities, engineering colleges, institutes of technology and medical colleges. It is supported by the most up-to-date literature citations, of direct interest to researchers on materials science and nanotechnology.




Smart Nanotechnology with Applications


Book Description

This comprehensive reference text discusses advance concepts and applications in the field of nanotechnology. The text presents a detailed discussion of key important concepts including nanomaterials and nanodevices, nano-bio interface, nanoscale memories, and semiconductor nanotechnology. It discusses applications of nanotechnology in the fields of aerospace engineering, cosmetic industry, pharmaceutical science, food industry, and the textile industry. The text will be useful for senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, nanotechnology, and pharmaceutical science. Discussing fundamental, advanced concepts and their applications in a single volume, this text will be useful as a reference text for senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, nanotechnology, and pharmaceutical science. It comprehensively discusses important concepts such as nano-robotics, carbon-based nanomaterials, and nanoscale memories. The text discusses advanced concepts of nanotechnology and its applications in the fields of textile, pharmaceutical sciences, aerospace, and food industry. It will be an ideal reference text for senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, nanotechnology, and nanoscience.




Nanotechnology


Book Description

Highlights the latest developments and advances in the field of nanoscience and nanotechnology and their applications in the design and development of material science and devices, energy, drug delivery, cosmetics, biology, biotechnology, tissue engineering, bioinformatics, information technology, agriculture and food, environmental protection, health risk, ethics, and regulations.




Quantum Mechanics with Applications to Nanotechnology and Information Science


Book Description

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has




Nanotechnology Applications for Tissue Engineering


Book Description

Tissue engineering involves seeding of cells on bio-mimicked scaffolds providing adhesive surfaces. Researchers though face a range of problems in generating tissue which can be circumvented by employing nanotechnology. It provides substrates for cell adhesion and proliferation and agents for cell growth and can be used to create nanostructures and nanoparticles to aid the engineering of different types of tissue. Written by renowned scientists from academia and industry, this book covers the recent developments, trends and innovations in the application of nanotechnologies in tissue engineering and regenerative medicine. It provides information on methodologies for designing and using biomaterials to regenerate tissue, on novel nano-textured surface features of materials (nano-structured polymers and metals e.g.) as well as on theranostics, immunology and nano-toxicology aspects. In the book also explained are fabrication techniques for production of scaffolds to a series of tissue-specific applications of scaffolds in tissue engineering for specific biomaterials and several types of tissue (such as skin bone, cartilage, vascular, cardiac, bladder and brain tissue). Furthermore, developments in nano drug delivery, gene therapy and cancer nanotechonology are described. The book helps readers to gain a working knowledge about the nanotechnology aspects of tissue engineering and will be of great use to those involved in building specific tissue substitutes in reaching their objective in a more efficient way. It is aimed for R&D and academic scientists, lab engineers, lecturers and PhD students engaged in the fields of tissue engineering or more generally regenerative medicine, nanomedicine, medical devices, nanofabrication, biofabrication, nano- and biomaterials and biomedical engineering. - Provides state-of-the-art knowledge on how nanotechnology can help tackling known problems in tissue engineering - Covers materials design, fabrication techniques for tissue-specific applications as well as immunology and toxicology aspects - Helps scientists and lab engineers building tissue substitutes in a more efficient way




Introduction to Nanoelectronics


Book Description

A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices.




Handbook of Nanotechnology Applications


Book Description

Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine presents a comprehensive overview on recent developments and prospects surrounding nanotechnology use in water/wastewater separation and purification, energy storage and conversion, agricultural and food process, and effective diagnoses and treatments in medical fields. The book includes detailed overviews of nanotechnology, including nanofiltration membrane for water/wastewater treatment, nanomedicine and nanosensor development for medical implementation, advanced nanomaterials of different structural dimensions (0D, 1D, 2D and 3D) for energy applications, as well as food and agricultural utilization. Other sections discuss the challenges of lab-based research transitioning towards practical industrial use. - Helps scientists and researchers quickly learn and understand the key role of nanotechnology in important industrial applications - Takes an interdisciplinary approach, demonstrating how nanotechnology is being used in a wide range of industry sectors - Outlines the role nanotechnology plays in creating safer, cheaper and more energy-efficient projects and devices




Carbon Nanotechnology


Book Description

Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rather than a kind of conference proceeding, Carbon Nanotechnology will be very useful not only to experienced scientists and engineers, who wish to broaden their knowledge of the wide-ranging nanotechnology and/or to develop practical devices, but also to graduate and senior undergraduate students who look to make their mark in this field of the future.· A comprehensive treatment from materials chemistry and structure-property to practical applications· Offers an in-depth analysis of various carbon nanotechnologies from both fundamental and practical perspectives· An easily accessible assessment of the materials properties and device performances based on all of the major classes of carbon nanomaterials, including: carbon fiber; diamond; C60; and carbon nanotubes· A concise compilation of the practical applications of carbon nanotechnologies from polymer-carbon nanocomposites to sensors, electron emitters, and molecular electronics