Materials Selection in Mechanical Design


Book Description

Understanding materials, their properties and behavior is fundamental to engineering design, and a key application of materials science. Written for all students of engineering, materials science and design, Materials Selection in Mechanical Design describes the procedures for material selection in mechanical design in order to ensure that the most suitable materials for a given application are identified from the full range of materials and section shapes available. Extensively revised for this fourth edition, Materials Selection in Mechanical Design is recognized as one of the leading materials selection texts, and provides a unique and genuinely innovative resource. Features new to this edition: - Material property charts now in full color throughout - Significant revisions of chapters on engineering materials, processes and process selection, and selection of material and shape while retaining the book's hallmark structure and subject content - Fully revised chapters on hybrid materials and materials and the environment - Appendix on data and information for engineering materials fully updated - Revised and expanded end-of-chapter exercises and additional worked examples Materials are introduced through their properties; materials selection charts (also available on line) capture the important features of all materials, allowing rapid retrieval of information and application of selection techniques. Merit indices, combined with charts, allow optimization of the materials selection process. Sources of material property data are reviewed and approaches to their use are given. Material processing and its influence on the design are discussed. New chapters on environmental issues, industrial engineering and materials design are included, as are new worked examples, exercise materials and a separate, online Instructor's Manual. New case studies have been developed to further illustrate procedures and to add to the practical implementation of the text. - The new edition of the leading materials selection text, now with full color material property charts - Includes significant revisions of chapters on engineering materials, processes and process selection, and selection of material and shape while retaining the book's hallmark structure and subject content - Fully revised chapters on hybrid materials and materials and the environment - Appendix on data and information for engineering materials fully updated - Revised and expanded end-of-chapter exercises and additional worked examples




Materials


Book Description

Materials: Engineering, Science, Processing and Design, Second Edition, was developed to guide material selection and understanding for a wide spectrum of engineering courses. The approach is systematic, leading from design requirements to a prescription for optimized material choice. This book presents the properties of materials, their origins, and the way they enter engineering design. The book begins by introducing some of the design-limiting properties: physical properties, mechanical properties, and functional properties. It then turns to the materials themselves, covering the families, the classes, and the members. It identifies six broad families of materials for design: metals, ceramics, glasses, polymers, elastomers, and hybrids that combine the properties of two or more of the others. The book presents a design-led strategy for selecting materials and processes. It explains material properties such as yield and plasticity, and presents elastic solutions for common modes of loading. The remaining chapters cover topics such as the causes and prevention of material failure; cyclic loading; fail-safe design; and the processing of materials.* Design-led approach motivates and engages students in the study of materials science and engineering through real-life case studies and illustrative applications * Highly visual full color graphics facilitate understanding of materials concepts and properties * Chapters on materials selection and design are integrated with chapters on materials fundamentals, enabling students to see how specific fundamentals can be important to the design process * Links with the Cambridge Engineering Selector (CES EduPack), the powerful materials selection software. See www.grantadesign.com for information NEW TO THIS EDITION: - "Guided Learning" sections on crystallography, phase diagrams and phase transformations enhance students' learning of these key foundation topics - Revised and expanded chapters on durability, and processing for materials properties - More than 50 new worked examples placed throughout the text




FCS Engineering Processes L4


Book Description




Materials and Design


Book Description

Materials and Design: The Art and Science of Material Selection in Product Design, Second Edition, discusses the role of materials and processes in product design. The book focuses on the materials that designers need, as well as on how and why they use them. The book's 10 chapters cover topics such as function and personality, factors influencing product design, the design process, materials selection, and case studies in materials and design. Appendices for each chapter provide exercises for readers, along with detailed charts of technical attributes of different materials for reference. This book will be particularly useful to both students and working designers. Students are introduced to the role of materials in manufacturing and design, with the help of familiar language and concepts. Working designers can use the book as a reference source for materials and manufacturing. - The best guide ever published on the on the role of materials, past and present, in product development, by noted materials authority Mike Ashby and professional designer Kara Johnson--now with even better photos and drawings on the Design Process - Significant new section on the use of re-cycled materials in products, and the importance of sustainable design for manufactured goods and services - Enhanced materials profiles, with addition of new materials types like nanomaterials, advanced plastics and bio-based materials




Manufacturing Process Selection Handbook


Book Description

Manufacturing Process Selection Handbook provides engineers and designers with process knowledge and the essential technological and cost data to guide the selection of manufacturing processes early in the product development cycle. Building on content from the authors' earlier introductory Process Selection guide, this expanded handbook begins with the challenges and benefits of identifying manufacturing processes in the design phase and appropriate strategies for process selection. The bulk of the book is then dedicated to concise coverage of different manufacturing processes, providing a quick reference guide for easy comparison and informed decision making. For each process examined, the book considers key factors driving selection decisions, including: - Basic process descriptions with simple diagrams to illustrate - Notes on material suitability - Notes on available process variations - Economic considerations such as costs and production rates - Typical applications and product examples - Notes on design aspects and quality issues Providing a quick and effective reference for the informed selection of manufacturing processes with suitable characteristics and capabilities, Manufacturing Process Selection Handbook is intended to quickly develop or refresh your experience of selecting optimal processes and costing design alternatives in the context of concurrent engineering. It is an ideal reference for those working in mechanical design across a variety of industries and a valuable learning resource for advanced students undertaking design modules and projects as part of broader engineering programs. - Provides manufacturing process information maps (PRIMAs) provide detailed information on the characteristics and capabilities of 65 processes in a standard format - Includes process capability charts detailing the processing tolerance ranges for key material types - Offers detailed methods for estimating costs, both at the component and assembly level




Engineering Materials 2


Book Description

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.




Engineering Excellence: Integrating Mechanical Engineering


Book Description

Mechanical engineering stands as one of the most diverse and dynamic fields of engineering, touching virtually every aspect of modern life. From the intricate mechanics of a wristwatch to the colossal turbines of a power plant, mechanical engineering is integral to the innovation and functionality of countless systems and devices. This book aims to provide a comprehensive introduction to the core principles and applications of mechanical engineering, offering insights into both foundational concepts and advanced technologies. The journey through mechanical engineering is both challenging and rewarding, requiring a solid understanding of mathematics, physics, and material science, alongside creativity and practical problem-solving skills. In this book, we explore the breadth of mechanical engineering, from fundamental theories of thermodynamics, fluid mechanics, and solid mechanics to the practicalities of design, manufacturing, and maintenance. Each chapter is structured to build upon the last, ensuring a cohesive and progressive learning experience. The initial chapters lay the groundwork by covering essential theoretical concepts, while subsequent chapters delve into specific applications and emerging trends. Whether it is the design of efficient HVAC systems, the development of renewable energy technologies, or the automation of manufacturing processes, this book seeks to highlight the pivotal role of mechanical engineering in addressing the challenges and opportunities of the 21st century. This book is designed for a wide audience, including undergraduate students beginning their journey in mechanical engineering, practicing engineers seeking to refresh their knowledge, and professionals from related disciplines who wish to gain a deeper understanding of mechanical systems. Each section includes practical examples, case studies, and problem sets to facilitate active learning and application of the material. In a world that is increasingly driven by technological advancements, the importance of mechanical engineering cannot be overstated. As we stand on the cusp of exciting developments in areas such as robotics, sustainable energy, and advanced manufacturing, mechanical engineers will continue to play a critical role in shaping the future. We hope that this book serves not only as an educational resource but also as an inspiration for the next generation of mechanical engineers. By understanding the principles and possibilities of this dynamic field, we can innovate and engineer solutions that improve lives and advance society.




The Multi Material Lightweight Vehicle (MMLV) Project


Book Description

The desire for greater fuel efficiency and reduced emissions have accelerated a shift from traditional materials to design solutions that more closely match materials and their properties with key applications. The Multi-Material Lightweight Vehicle (MMLV) Project presents cutting edge engineering that meets future challenges in a concept vehicle with weight and life-cycle assessment savings. These results significantly contribute to achieving fuel reduction and to meeting future Corporate Average Fuel Economy (CAFÉ) regulations without compromising vehicle performance or occupant safety. The MMLV Project presents: • Lightweight materials applications. • Body in white design and computer aided engineering • Engine and transmission design and lightweighting. • Full vehicle test results that are specific to the MMLV subsystems including crash, corrosion, durability and Noise Vibration and Harshness (NVH). • The Life Cycle Analysis (LCA) for the MMLV The aluminum-intensive structure, combined with carbon fiber, magnesium, and titanium results in full vehicle mass reduction of a C/D class family sedan to that of a subcompact B-car (two vehicle segments lighter). The MMLV Project presents engineering solutions that frame materials selection and applications for the future.




Introduction to Plastics Engineering


Book Description

The authoritative introduction to all aspects of plastics engineering — offering both academic and industry perspectives in one complete volume. Introduction to Plastics Engineering provides a self-contained introduction to plastics engineering. A unique synergistic approach explores all aspects of material use — concepts, mechanics, materials, part design, part fabrication, and assembly — required for converting plastic materials, mainly in the form of small pellets, into useful products. Thermoplastics, thermosets, elastomers, and advanced composites, the four disparate application areas of polymers normally treated as separate subjects, are covered together. Divided into five parts — Concepts, Mechanics, Materials, Part Processing and Assembly, and Material Systems — this inclusive volume enables readers to gain a well-rounded, foundational knowledge of plastics engineering. Chapters cover topics including the structure of polymers, how concepts from polymer physics explain the macro behavior of plastics, evolving concepts for plastics use, simple mechanics principles and their role in plastics engineering, models for the behavior of solids and fluids, and the mechanisms underlying the stiffening of plastics by embedded fibers. Drawing from his over fifty years in both academia and industry, Author Vijay Stokes uses the synergy between fundamentals and applications to provide a more meaningful introduction to plastics. Examines every facet of plastics engineering from materials and fabrication methods to advanced composites Provides accurate, up-to-date information for students and engineers both new to plastics and highly experienced with them Offers a practical guide to large number of materials and their applications Addresses current issues for mechanical design, part performance, and part fabrication Introduction to Plastics Engineering is an ideal text for practicing engineers, researchers, and students in mechanical and plastics engineering and related industries.




Engineering Materials 1


Book Description

Widely adopted around the world, this is a core materials science and mechanical engineering text. Engineering Materials 1 gives a broad introduction to the properties of materials used in engineering applications. With each chapter corresponding to one lecture, it provides a complete introductory course in engineering materials for students with no previous background in the subject. Ashby & Jones have an established, successful track record in developing understanding of the properties of materials and how they perform in reality. One of the best-selling materials properties texts; well known, well established and well liked New student friendly format, with enhanced pedagogy including many more case studies, worked examples, and student questions World-renowned author team