Science, Music, And Mathematics: The Deepest Connections


Book Description

Professor Michael Edgeworth McIntyre is an eminent scientist who has also had a part-time career as a musician. From a lifetime's thinking, he offers this extraordinary synthesis exposing the deepest connections between science, music, and mathematics, while avoiding equations and technical jargon. He begins with perception psychology and the dichotomization instinct and then takes us through biological evolution, human language, and acausality illusions all the way to the climate crisis and the weaponization of the social media, and beyond that into the deepest parts of theoretical physics — demonstrating our unconscious mathematical abilities.He also has an important message of hope for the future. Contrary to popular belief, biological evolution has given us not only the nastiest, but also the most compassionate and cooperative parts of human nature. This insight comes from recognizing that biological evolution is more than a simple competition between selfish genes. Rather, he suggests, in some ways it is more like turbulent fluid flow, a complex process spanning a vast range of timescales.Professor McIntyre is a Fellow of the Royal Society of London (FRS) and has worked on problems as diverse as the Sun's magnetic interior, the Antarctic ozone hole, jet streams in the atmosphere, and the psychophysics of violin sound. He has long been interested in how different branches of science can better communicate with each other and with the public, harnessing aspects of neuroscience and psychology that point toward the deep 'lucidity principles' that underlie skilful communication.




A Mind for Numbers


Book Description

Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. In her book, she offers you the tools needed to get a better grasp of that intimidating but inescapable field.




How Numbers Work


Book Description

Think of a number between one and ten. No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends. The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it? How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIES New Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.




Math for Scientists


Book Description

This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.




50 Math and Science Games for Leadership


Book Description

Did you like Math or Science in school? Have you played games that stimulated your thought processes for Math and Science? Trying to be creative in your Math, Science or leadership class? Can leadership be taught? Is leadership an Art or a Science or Math? Seeking to impact your training program with creative games?A primer for leadership development, this book introduces Math and Science games with a review process component that can be used for leadership instruction. The book highlights key leadership principles which show that leaders must: Ask questions; Be disciplined; Create and see things differently; Develop resources; Engage in active listening; Make priorities; Multiply leaders; Problem solve; Set an example; Sacrifice; Search and explore; Strategize; Support diversity; Work in teams and collaborate.




What is Mathematics?


Book Description

The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. "Lucid . . . easily understandable".--Albert Einstein. 301 linecuts.




Transforming Teaching in Math and Science


Book Description

Teachers often want to learn new ideas and approaches to improve their teaching, but their efforts are often blocked by structural constraints in their districts and schools. How can schools overcome these barriers to provide more supportive environments for change? The authors answer this question through the study of six cases of schools and districts where teachers and researchers collaborated to develop teaching for understanding in math and science. This new book features: a new conceptual model of how school resources relate to teaching and learning, focusing not only on material resources such as time and money but also on human and social resources; methods that administrators can use to support teachers who want to improve their teaching of math and science; elements that professional developers should look for in a school environment when they are considering working with staff on teaching improvements; and answers to important questions, including how schools operate as organizations, how they control work, how they respond to changes in their environment, and how they improve classroom teaching and learning.




Demystify Math, Science, and Technology


Book Description

Technology is viewed as a powerful force both in and out of school and has long been linked with math and science. Although concepts and activities of this book apply to any grade, the primary focus is on the elementary and middle school levels. This book provides principles and practical strategies for promoting creative and innovative work in math, science, and technology. The authors pay close attention to the social nature of learning and how collaboration can spark student interest in open-ended problem-solving. Shining a light on mathematic, scientific, and technological processes gives everyone more control over what is going on around them and increases understanding of how things work.




Exploring Math & Science in Preschool


Book Description

"Much of the content in this book is adapted from Teaching Young Children (TYC), NAEYC's award-winning magazine ..."--Page [104]




Guide to Essential Math


Book Description

This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables