Learning to Love Math


Book Description

Is there a way to get students to love math? Dr. Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity. With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to * Improve deep-seated negative attitudes toward math. * Plan lessons with the goal of "achievable challenge" in mind. * Reduce mistake anxiety with techniques such as errorless math and estimation. * Teach to different individual learning strengths and skill levels. * Spark motivation. * Relate math to students' personal interests and goals. * Support students in setting short-term and long-term goals. * Convince students that they can change their intelligence. With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included—providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!




Visible Learning for Mathematics, Grades K-12


Book Description

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.




Mindset Mathematics


Book Description

Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the first-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.




Effective Teaching Strategies for Dyscalculia and Learning Difficulties in Mathematics


Book Description

Effective Teaching Strategies for Dyscalculia and Learning Difficulties in Mathematics provides an essential bridge between scientific research and practical interventions with children. It unpacks what we know about the possible cognitive causation of mathematical difficulties in order to improve teaching and therefore learning. Each chapter considers a specific domain of children’s numerical development: counting and the understanding of numbers, understanding of the base-10 system, arithmetic, word problem solving, and understanding rational numbers. The accessible guidance includes a literature review on each topic, surveying how each process develops in children, the difficulties encountered at that level by some pupils, and the intervention studies that have been published. It guides the reader step-by-step through practical guidelines of how to assess these processes and how to build an intervention to help children master them. Illustrated throughout with examples of materials used in the effective interventions described, this essential guide offers deep understanding and effective strategies for developmental and educational psychologists, special educational needs and/or disabilities coordinators, and teachers working with children experiencing mathematical difficulties.




Teaching Math to Multilingual Students, Grades K-8


Book Description

Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.




Literacy Strategies for Improving Mathematics Instruction


Book Description

An eyeopening look at how teachers can use literacy strategies to help students better understand mathematics.




Principles to Actions


Book Description

This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.




Instructional Sequence Matters, Grades 3-5


Book Description

Instructional Sequence Matters, Grades 3- 5 is a one-stop resource that will inspire you to reimagine how you teach science in elementary school. The book discusses two popular approaches for structuring your lessons: POE (Predict, Observe, and Explain) and 5E (Engage, Explore, Explain, Elaborate, and Evaluate). It also shows how simple shifts in the way you arrange and combine activities will help young students construct firsthand knowledge, while allowing you to put the Next Generation Science Standards (NGSS) into practice. Like its popular counterpart for grades 6- 8, the book is designed as a complete self-guided tour. It helps both novice teachers and classroom veterans to understand * Why sequence matters. A concise review of developmental psychology, neurosciences, cognitive science, and science education research explains why the order in which you structure your lessons is so critical. * What you need to do. An overview of important planning considerations covers becoming an " explore-before-explain" teacher and designing 5E and POE instructional models. * How to do it. Ready-to-teach lessons use either a POE or 5E sequence to cover heat and temperature, magnetism, electric circuits, chemical changes, ecosystems, and earth processes. Detailed examples show how specific aspects of all three dimensions of the NGSS can translate into your classroom. * What to do next. Reflection questions will spark thinking throughout the sequencing process and help you develop the knowledge to adapt these concepts to your students' needs. Instructional Sequence Matters will give you both the rationale and the real-life examples to restructure the hands-on approaches you are now using. The result will be a sequence for science instruction that promotes long-lasting understanding for your third- fourth-, or fifth-grade students.




Number Talks


Book Description

"A multimedia professional learning resource"--Cover.




Differentiating Math Instruction


Book Description

This exciting and unique book presents practical, immediately applicable ideas for differentiating instruction in maths in the elementary classroom. It explains in detail the process of differentiation in maths, beginning with lesson planning, through implementation of a wide variety of research-proven instructional strategies and tactics. The ′Ideas from Teachers′ feature, located in various chapters, includes instructional tactics provided by teachers that exemplify the differentiation process. Also included are the ′To Ten Tactics′ lists which provide simple, immediately applicable tactics that can be easily implemented in almost every classroom.