Mathematical Analysis and Numerical Methods for Science and Technology


Book Description

These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.




Mathematical Analysis and Numerical Methods for Science and Technology


Book Description

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.




Mathematical Analysis and Numerical Methods for Science and Technology


Book Description

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.










Using R for Numerical Analysis in Science and Engineering


Book Description

Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.




Numerical Methods in Scientific Computing


Book Description

This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.




Numerical Analysis for Science, Engineering and Technology


Book Description

This textbook is intended as a guide for undergraduate and graduate students in engineering, science and technology courses. Chapters of the book cover the numerical concepts of errors, approximations, differential equations and partial differential equations. The simple presentation of numerical concepts and illustrative examples helps students and general readers to understand the topics covered in the text.




Mathematical Modeling and Numerical Techniques in Drying Technology


Book Description

Offers information necessary for the development of mathematical models and numerical techniques to solve specific drying problems. The book addresses difficult issues involved with the drying equations of numerical analysis, including mesh generation, discretinization strategies, the nonlinear equation set and the linearized algebraic system, convergance criteria, time step control, experimental validation, optimum methods of visualization results, and more.




Numerical Methods for Equations and its Applications


Book Description

This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.