Mathematical Analysis II


Book Description

The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.




Mathematical Analysis I


Book Description

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.




Analysis I


Book Description

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.




Analysis II


Book Description

This is part two of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.




Problems in Mathematical Analysis


Book Description




Mathematical Analysis II


Book Description

The purpose of this textbook is to present an array of topics in Calculus, and conceptually follow our previous effort Mathematical Analysis I.The present material is partly found, in fact, in the syllabus of the typical second lecture course in Calculus as offered in most Italian universities. While the subject matter known as `Calculus 1' is more or less standard, and concerns real functions of real variables, the topics of a course on `Calculus 2'can vary a lot, resulting in a bigger flexibility. For these reasons the Authors tried to cover a wide range of subjects, not forgetting that the number of credits the current programme specifications confers to a second Calculus course is not comparable to the amount of content gathered here. The reminders disseminated in the text make the chapters more independent from one another, allowing the reader to jump back and forth, and thus enhancing the versatility of the book. On the website: http://calvino.polito.it/canuto-tabacco/analisi 2, the interested reader may find the rigorous explanation of the results that are merely stated without proof in the book, together with useful additional material. The Authors have completely omitted the proofs whose technical aspects prevail over the fundamental notions and ideas. The large number of exercises gathered according to the main topics at the end of each chapter should help the student put his improvements to the test. The solution to all exercises is provided, and very often the procedure for solving is outlined.




Analysis


Book Description

Providing an introduction to real analysis, this text is suitable for honours undergraduates. It starts at the very beginning - the construction of the number systems and set theory, then to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.







Analysis II


Book Description

Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.




Mathematical Analysis of Problems in the Natural Sciences


Book Description

Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."