Mathematical and Computational Methods in Photonics and Phononics


Book Description

The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.







Applied Mathematical Problems in Geophysics


Book Description

This CIME Series book provides mathematical and simulation tools to help resolve environmental hazard and security-related issues. The contributions reflect five major topics identified by the SIES (Strategic Initiatives for the Environment and Security) as having significant societal impact: optimal control in waste management, in particular the degradation of organic waste by an aerobic biomass, by means of a mathematical model; recent developments in the mathematical analysis of subwave resonators; conservation laws in continuum mechanics, including an elaboration on the notion of weak solutions and issues related to entropy criteria; the applications of variational methods to 1-dimensional boundary value problems, in particular to light ray-tracing in ionospheric physics; and the mathematical modelling of potential electromagnetic co-seismic events associated to large earthquakes. This material will provide a sound foundation for those who intend to approach similar problems from a multidisciplinary perspective.




Maxwell’s Equations in Periodic Structures


Book Description

This book addresses recent developments in mathematical analysis and computational methods for solving direct and inverse problems for Maxwell’s equations in periodic structures. The fundamental importance of the fields is clear, since they are related to technology with significant applications in optics and electromagnetics. The book provides both introductory materials and in-depth discussion to the areas in diffractive optics that offer rich and challenging mathematical problems. It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics, and engineering disciplines as well.




Applied Analysis of Composite Media


Book Description

Applied Analysis of Composite Media: Analytical and Computational Approaches presents formulas and techniques that can used to study 2D and 3D problems in composites and random porous media. The main strength of this book is its broad range of applications that illustrate how these techniques can be applied to investigate elasticity, viscous flow and bacterial motion in composite materials. In addition to paying attention to constructive computations, the authors have also included information on codes via a designated webpage. This book will be extremely useful for postgraduate students, academic researchers, mathematicians and industry professionals who are working in structured media.




Metamaterial Analysis and Design


Book Description

Metamaterials are advanced composite materials which have exotic and powerful properties. Their complicated microstructures make metamaterials challenging to model, requiring the use of sophisticated mathematical techniques. This book uses a from-first-principles approach (based on boundary integral methods and asymptotic analysis) to study a class of high-contrast metamaterials. These mathematical techniques are applied to the problem of designing graded metamaterials that replicate the function of the cochlea.




Maximal Function Methods for Sobolev Spaces


Book Description

This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.




Numerical Algorithms for Number Theory: Using Pari/GP


Book Description

This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.




Diagrammatic Algebra


Book Description

This book is an introduction to techniques and results in diagrammatic algebra. It starts with abstract tensors and their categorifications, presents diagrammatic methods for studying Frobenius and Hopf algebras, and discusses their relations with topological quantum field theory and knot theory. The text is replete with figures, diagrams, and suggestive typography that allows the reader a glimpse into many higher dimensional processes. The penultimate chapter summarizes the previous material by demonstrating how to braid 3- and 4- dimensional manifolds into 5- and 6-dimensional spaces. The book is accessible to post-qualifier graduate students, and will also be of interest to algebraists, topologists and algebraic topologists who would like to incorporate diagrammatic techniques into their research.




Asymptotic Geometric Analysis, Part II


Book Description

This book is a continuation of Asymptotic Geometric Analysis, Part I, which was published as volume 202 in this series. Asymptotic geometric analysis studies properties of geometric objects, such as normed spaces, convex bodies, or convex functions, when the dimensions of these objects increase to infinity. The asymptotic approach reveals many very novel phenomena which influence other fields in mathematics, especially where a large data set is of main concern, or a number of parameters which becomes uncontrollably large. One of the important features of this new theory is in developing tools which allow studying high parametric families. Among the topics covered in the book are measure concentration, isoperimetric constants of log-concave measures, thin-shell estimates, stochastic localization, the geometry of Gaussian measures, volume inequalities for convex bodies, local theory of Banach spaces, type and cotype, the Banach-Mazur compactum, symmetrizations, restricted invertibility, and functional versions of geometric notions and inequalities.