Mathematical Approaches to Polymer Sequence Analysis and Related Problems


Book Description

An edited volume describing the latest developments in approaching the problem of polymer sequence analysis, with special emphasis on the most relevant biopolymers (peptides and DNA) but not limited to them. The chapters will include peptide sequence analysis, DNA sequence analysis, analysis of biopolymers and nonpolymers, sequence alignment problems, and more.




Reactive Extrusion


Book Description

This first comprehensive overview of reactive extrusion technology for over a decade combines the views of contributors from both academia and industry who share their experiences and highlight possible applications and markets. They also provide updated information on the underlying chemical and physical concepts, summarizing recent developments in terms of the material and machinery used. As a result, readers will find here a compilation of potential applications for reactive extrusion to access new and cost-effective polymeric materials, while using existing compounding machines.




Declarative Logic Programming


Book Description

The idea of this book grew out of a symposium that was held at Stony Brook in September 2012 in celebration of David S.Warren's fundamental contributions to Computer Science and the area of Logic Programming in particular. Logic Programming (LP) is at the nexus of Knowledge Representation, Artificial Intelligence, Mathematical Logic, Databases, and Programming Languages. It is fascinating and intellectually stimulating due to the fundamental interplay among theory, systems, and applications brought about by logic. Logic programs are more declarative in the sense that they strive to be logical specifications of "what" to do rather than "how" to do it, and thus they are high-level and easier to understand and maintain. Yet, without being given an actual algorithm, LP systems implement the logical specifications automatically. Several books cover the basics of LP but focus mostly on the Prolog language with its incomplete control strategy and non-logical features. At the same time, there is generally a lack of accessible yet comprehensive collections of articles covering the key aspects in declarative LP. These aspects include, among others, well-founded vs. stable model semantics for negation, constraints, object-oriented LP, updates, probabilistic LP, and evaluation methods, including top-down vs. bottom-up, and tabling. For systems, the situation is even less satisfactory, lacking accessible literature that can help train the new crop of developers, practitioners, and researchers. There are a few guides onWarren’s Abstract Machine (WAM), which underlies most implementations of Prolog, but very little exists on what is needed for constructing a state-of-the-art declarative LP inference engine. Contrast this with the literature on, say, Compilers, where one can first study a book on the general principles and algorithms and then dive in the particulars of a specific compiler. Such resources greatly facilitate the ability to start making meaningful contributions quickly. There is also a dearth of articles about systems that support truly declarative languages, especially those that tie into first-order logic, mathematical programming, and constraint solving. LP helps solve challenging problems in a wide range of application areas, but in-depth analysis of their connection with LP language abstractions and LP implementation methods is lacking. Also, rare are surveys of challenging application areas of LP, such as Bioinformatics, Natural Language Processing, Verification, and Planning. The goal of this book is to help fill in the previously mentioned void in the LP literature. It offers a number of overviews on key aspects of LP that are suitable for researchers and practitioners as well as graduate students. The following chapters in theory, systems, and applications of LP are included.




Advances in Knowledge Discovery and Management


Book Description

This book is a collection of representative and novel works done in Data Mining, Knowledge Discovery, Clustering and Classification that were originally presented in French at the EGC'2012 Conference held in Bordeaux, France, on January 2012. This conference was the 12th edition of this event, which takes place each year and which is now successful and well-known in the French-speaking community. This community was structured in 2003 by the foundation of the French-speaking EGC society (EGC in French stands for ``Extraction et Gestion des Connaissances'' and means ``Knowledge Discovery and Management'', or KDM). This book is intended to be read by all researchers interested in these fields, including PhD or MSc students, and researchers from public or private laboratories. It concerns both theoretical and practical aspects of KDM. The book is structured in two parts called ``Knowledge Discovery and Data Mining'' and ``Classification and Feature Extraction or Selection''. The first part (6 chapters) deals with data clustering and data mining. The three remaining chapters of the second part are related to classification and feature extraction or feature selection.




Handbook of Satisfiability


Book Description

Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter. This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work. Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st century computer science." Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key to the solution of so many other problems." Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?"




Data Mining for Biomarker Discovery


Book Description

Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics. This volume is a collection of state-of-the-art research into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques. This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as well engineers and applied scientists interested in the interdisciplinary application of data mining techniques.




University of Michigan Official Publication


Book Description

Each number is the catalogue of a specific school or college of the University.







Mathematical Approaches to Biomolecular Structure and Dynamics


Book Description

This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES TO BIOMOLECULAR STRUCTURE AND DYNAMICS is one of the two volumes based on the proceedings of the 1994 IMA Sum mer Program on "Molecular Biology" and comprises Weeks 3 and 4 of the four-week program. Weeks 1 and 2 appeared as Volume 81: Genetic Mapping and DNA Sequencing. We thank Jill P. Mesirov, Klaus Schulten, and De Witt Sumners for organizing Weeks 3 and 4 of the workshop and for editing the proceedings. We also take this opportunity to thank the National Institutes of Health (NIH) (National Center for Human Genome Research), the National Science Foundation (NSF) (Biological Instrumen tation and Resources), and the Department of Energy (DOE), whose fi nancial support made the summer program possible. A vner Friedman Robert Gulliver v PREFACE The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mech anisms of living organisms. Interdisciplinary research in mathematics and molecular biology is driven by ever growing experimental, theoretical and computational power. The mathematical sciences accompany and support much of the progress achieved by experiment and computation as well as provide insight into geometric and topological properties of biomolecular structure and processes. This volume consists of a representative sample of the papers presented during the last two weeks of the month-long Institute for Mathematics and Its Applications Summer 1994 Program in Molecular Biology.