Mathematical Aspects of Scheduling and Applications


Book Description

Mathematical Aspects of Scheduling and Applications addresses the perennial problem of optimal utilization of finite resources in the accomplishment of an assortment of tasks or objectives. The book provides ways to uncover the core of these problems, presents them in mathematical terms, and devises mathematical solutions for them. The book consists of 12 chapters. Chapter 1 deals with network problems, the shortest path problem, and applications to control theory. Chapter 2 stresses the role and use of computers based on the decision-making problems outlined in the preceding chapter. Chapter 3 classifies scheduling problems and their solution approaches. Chapters 4 to 6 discuss machine sequencing problems and techniques. Chapter 5 tackles capacity expansion problems and introduces the technique of embedded state space dynamic programming for reducing dimensionality so that larger problems can be solved. Chapter 6 then examines an important class of network problems with non-serial phase structures and exploits dimensionality reduction techniques, such as the pseudo-stage concept, branch compression, and optimal order elimination methods to solve large-scale, nonlinear network scheduling problems. Chapters 7 to 11 consider the flow-shop scheduling problem under different objectives and constraints. Chapter 12 discusses the job-shop-scheduling problem. The book will be useful to economists, planners, and graduate students in the fields of mathematics, operations research, management science, computer science, and engineering.




Scheduling Theory. Single-Stage Systems


Book Description

Scheduling theory is an important branch of operations research. Problems studied within the framework of that theory have numerous applications in various fields of human activity. As an independent discipline scheduling theory appeared in the middle of the fifties, and has attracted the attention of researchers in many countries. In the Soviet Union, research in this direction has been mainly related to production scheduling, especially to the development of automated systems for production control. In 1975 Nauka ("Science") Publishers, Moscow, issued two books providing systematic descriptions of scheduling theory. The first one was the Russian translation of the classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both. books well represent major results known by that time, contain an exhaustive bibliography on the subject. Thus, the books, as well as the Russian translation of Computer and Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to the development of scheduling theory in the Soviet Union. Many different models, the large number of new results make it difficult for the researchers who work in related fields to follow the fast development of scheduling theory and to master new methods and approaches quickly.







An Introduction to the Mathematics of Planning and Scheduling


Book Description

This book introduces readers to the many variables and constraints involved in planning and scheduling complex systems, such as airline flights and university courses. Students will become acquainted with the necessity for scheduling activities under conditions of limited resources in industrial and service environments, and become familiar with methods of problem solving. Written by an expert author with decades of teaching and industry experience, the book provides a comprehensive explanation of the mathematical foundations to solving complex requirements, helping students to understand underlying models, to navigate software applications more easily, and to apply sophisticated solutions to project management. This is emphasized by real-world examples, which follow the components of the manufacturing process from inventory to production to delivery. Undergraduate and graduate students of industrial engineering, systems engineering, and operations management will find this book useful in understanding optimization with respect to planning and scheduling.




Scheduling Theory and Its Applications


Book Description

Covering deterministic scheduling, stochastic scheduling, and the probabilistic analysis of algorithms, this unusually broad view of the subject brings together tutorials, surveys and articles with original results from foremost international experts. The contributions reflect the great diversity in scheduling theory in terms of academic disciplines, applications areas, fundamental approaches and mathematical skills. This book will help researchers to be aware of the progress in the various areas of specialization and the possible influences that this progress may have on their own specialities. Few disciplines are driven so much by continually changing and expanding technology, a fact that gives scheduling a permanence while adding to the excitement of designing and analyzing new systems. The book will be a vital resource for researchers and graduate students of computer science, applied mathematics and operational research who wish to remain up-to-date on the scheduling models and problems of many of the newest technologies in industry, commerce, and the computer and communications sciences.




Scheduling for Parallel Processing


Book Description

Overview and Goals This book is dedicated to scheduling for parallel processing. Presenting a research ?eld as broad as this one poses considerable dif?culties. Scheduling for parallel computing is an interdisciplinary subject joining many ?elds of science and te- nology. Thus, to understand the scheduling problems and the methods of solving them it is necessary to know the limitations in related areas. Another dif?culty is that the subject of scheduling parallel computations is immense. Even simple search in bibliographical databases reveals thousands of publications on this topic. The - versity in understanding scheduling problems is so great that it seems impossible to juxtapose them in one scheduling taxonomy. Therefore, most of the papers on scheduling for parallel processing refer to one scheduling problem resulting from one way of perceiving the reality. Only a few publications attempt to arrange this ?eld of knowledge systematically. In this book we will follow two guidelines. One guideline is a distinction - tween scheduling models which comprise a set of scheduling problems solved by dedicated algorithms. Thus, the aim of this book is to present scheduling models for parallel processing, problems de?ned on the grounds of certain scheduling models, and algorithms solving the scheduling problems. Most of the scheduling problems are combinatorial in nature. Therefore, the second guideline is the methodology of computational complexity theory. Inthisbookwepresentfourexamplesofschedulingmodels. Wewillgodeepinto the models, problems, and algorithms so that after acquiring some understanding of them we will attempt to draw conclusions on their mutual relationships.




A Book of Open Shop Scheduling


Book Description

This book provides an in-depth presentation of algorithms for and complexity of open shop scheduling. Open shops allow operations of a job to be executed in any order, contrary to flow and job shops where the order is pre-specified. The author brings the field up to date with more emphasis on new and recent results, and connections with graph edge coloring and mathematical programming. The book explores applications to production and operations management, wireless network scheduling, and timetabling. The book is addressed to researchers, graduate students, and practitioners in Operations Research, Operations Management, computer science and mathematics, who are developing and using mathematical approaches to applications in manufacturing, services and distributed wireless network scheduling.




Scheduling


Book Description

This new edition of the well established text Scheduling - Theory, Algorithms, and Systems provides an up-to-date coverage of important theoretical models in the scheduling literature as well as significant scheduling problems that occur in the real world. It again includes supplementary material in the form of slide-shows from industry and movies that show implementations of scheduling systems. The main structure of the book as per previous edition consists of three parts. The first part focuses on deterministic scheduling and the related combinatorial problems. The second part covers probabilistic scheduling models; in this part it is assumed that processing times and other problem data are random and not known in advance. The third part deals with scheduling in practice; it covers heuristics that are popular with practitioners and discusses system design and implementation issues. All three parts of this new edition have been revamped and streamlined. The references have been made completely up-to-date. Theoreticians and practitioners alike will find this book of interest. Graduate students in operations management, operations research, industrial engineering, and computer science will find the book an accessible and invaluable resource. Scheduling - Theory, Algorithms, and Systems will serve as an essential reference for professionals working on scheduling problems in manufacturing, services, and other environments. Reviews of third edition: This well-established text covers both the theory and practice of scheduling. The book begins with motivating examples and the penultimate chapter discusses some commercial scheduling systems and examples of their implementations." (Mathematical Reviews, 2009)




Principles of Sequencing and Scheduling


Book Description

An up-to-date and comprehensive treatment of the fundamentals of scheduling theory, including recent advances and state-of-the-art topics Principles of Sequencing and Scheduling strikes a unique balance between theory and practice, providing an accessible introduction to the concepts, methods, and results of scheduling theory and its core topics. With real-world examples and up-to-date modeling techniques, the book equips readers with the basic knowledge needed for understanding scheduling theory and delving into its applications. The authors begin with an introduction and overview of sequencing and scheduling, including single-machine sequencing, optimization and heuristic solution methods, and models with earliness and tardiness penalties. The most current material on stochastic scheduling, including correct scheduling of safety time and the use of simulation for optimization, is then presented and integrated with deterministic models. Additional topical coverage includes: Extensions of the basic model Parallel-machine models Flow shop scheduling Scheduling groups of jobs The job shop problem Simulation models for the dynamic job shop Network methods for project scheduling Resource-constrained project scheduling Stochastic and safe scheduling Extensive end-of-chapter exercises are provided, some of which are spreadsheet-oriented, and link scheduling theory to the most popular analytic platform among today's students and practitioners—the Microsoft Office Excel® spreadsheet. Extensive references direct readers to additional literature, and the book's related Web site houses material that reinforces the book's concepts, including research notes, data sets, and examples from the text. Principles of Sequencing and Scheduling is an excellent book for courses on sequencing and scheduling at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, computer science, operations research, and engineering.




Mathematical Aspects of Scheduling Theory


Book Description

The purpose of this paper is to formulate a number of significant mathematical problems which have arisen in connection with the theory of scheduling, and to discuss the methods which have been devised to treat these problems. (Author).