MATHEMATICAL COMBINATORICS, Vol.1 / 2019


Book Description

The Mathematical Combinatorics (International Book Series) is a fully refereed international book series with ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 110-160 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences.




International Journal of Mathematical Combinatorics, vol. 4/2019


Book Description

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




International Journal of Mathematical Combinatorics, Volume 1, 2019


Book Description

International J. Mathematical Combinatorics is a fully refereed international journal. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.




International Journal of Mathematical Combinatorics, Volume 2, 2019


Book Description

International J. Mathematical Combinatorics is a fully refereed international journal. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.




MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES), Vol. 4, 2019


Book Description

The mathematical combinatorics is a subject that applying combinatorial notions to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr. Linfan MAO on mathematical sciences. The International J. Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




Mathematical Combinatorics: My Philosophy Promoted on Science Internationally


Book Description

Mathematical science is the human recognition on the evolution laws of things that we can understand with the principle of logical consistency by mathematics, i.e., mathematical reality. So, is the mathematical reality equal to the reality of thing? The answer is not because there always exists contradiction between things in the eyes of human, which is only a local or conditional conclusion. Such a situation enables us to extend the mathematics further by combinatorics for the reality of thing from the local reality and then, to get a combinatorial reality of thing. This is the combinatorial conjecture for mathematical science, i.e., CC conjecture that I put forward in my postdoctoral report for Chinese Acade- my of Sciences in 2005, namely any mathematical science can be reconstructed from or made by combinatorialization. After discovering its relation with Smarandache multi-spaces, it is then be applied to generalize mathematics over 1-dimensional topological graphs, namely the mathematical combinatorics that I promoted on science internationally for more than 20 years. This paper surveys how I proposed this conjecture from combinatorial topology, how to use it for characterizing the non-uniform groups or contradictory systems and furthermore, why I introduce the continuity ow GL as a mathematical element, i.e., vectors in Banach space over topological graphs with operations and then, how to apply it to generalize a few of important conclusions in functional analysis for providing the human recognition on the reality of things, including the subdivision of substance into elementary particles or quarks in theoretical physics with a mathematical supporting.




MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES), Vol. 2, 2020


Book Description

The mathematical combinatorics is a subject that applying combinatorial notions to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr. Linfan MAO on mathematical sciences. The International J. Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES)


Book Description

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. TheMathematical Combinatorics (International Book Series) is a fully refereed international book series with an ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandachemulti-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




Combinatorics and Graph Theory


Book Description

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.




International Journal of Neutrosophic Science (IJNS) Volume 7, 2020


Book Description

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.