Mathematical Economics of Multi-Level Optimisation


Book Description

Since there exists a multi-level policy making system in the market economies, choices of decision makers at different levels should be considered explicitly in the formulation of sectoral plans and policies. To support the hypothesis, a theoretical energy planning approach is developed within the framework of the theory of economic policy planning, policy systems analysis and multi-level programming. The Parametric Programming Search Algorithm has been developed. On the basis of this theoretical model, an Australian Energy Policy System Optimisation Model (AEPSOM) has been developed and is used to formulate an Australian multi-level energy plan.




Multilevel Optimization: Algorithms and Applications


Book Description

Researchers working with nonlinear programming often claim "the word is non linear" indicating that real applications require nonlinear modeling. The same is true for other areas such as multi-objective programming (there are always several goals in a real application), stochastic programming (all data is uncer tain and therefore stochastic models should be used), and so forth. In this spirit we claim: The word is multilevel. In many decision processes there is a hierarchy of decision makers, and decisions are made at different levels in this hierarchy. One way to handle such hierar chies is to focus on one level and include other levels' behaviors as assumptions. Multilevel programming is the research area that focuses on the whole hierar chy structure. In terms of modeling, the constraint domain associated with a multilevel programming problem is implicitly determined by a series of opti mization problems which must be solved in a predetermined sequence. If only two levels are considered, we have one leader (associated with the upper level) and one follower (associated with the lower level).




Mathematical Optimization and Economic Theory


Book Description

Static optimization : Application of static optimization; Dynamic optimization; Applications of dynamic optimization.




Optimization in Economics and Finance


Book Description

Some recent developments in the mathematics of optimization, including the concepts of invexity and quasimax, have not yet been applied to models of economic growth, and to finance and investment. Their applications to these areas are shown in this book.




Mathematical Analysis and Optimization for Economists


Book Description

In Mathematical Analysis and Optimization for Economists, the author aims to introduce students of economics to the power and versatility of traditional as well as contemporary methodologies in mathematics and optimization theory; and, illustrates how these techniques can be applied in solving microeconomic problems. This book combines the areas of intermediate to advanced mathematics, optimization, and microeconomic decision making, and is suitable for advanced undergraduates and first-year graduate students. This text is highly readable, with all concepts fully defined, and contains numerous detailed example problems in both mathematics and microeconomic applications. Each section contains some standard, as well as more thoughtful and challenging, exercises. Solutions can be downloaded from the CRC Press website. All solutions are detailed and complete. Features Contains a whole spectrum of modern applicable mathematical techniques, many of which are not found in other books of this type. Comprehensive and contains numerous and detailed example problems in both mathematics and economic analysis. Suitable for economists and economics students with only a minimal mathematical background. Classroom-tested over the years when the author was actively teaching at the University of Hartford. Serves as a beginner text in optimization for applied mathematics students. Accompanied by several electronic chapters on linear algebra and matrix theory, nonsmooth optimization, economic efficiency, and distance functions available for free on www.routledge.com/9780367759018.




Multi-level Mixed-Integer Optimization


Book Description

This book provides the fundamental underlying mathematical theory, numerical algorithms and effi cient computational tools for the solution of multi-level mixedinteger optimization problems. It can enable a vast array of decision makers and engineers (e.g. process engineers, bioengineers, chemical and civil engineers, and economists) to model, formulate and solve hierarchical decision making problems. The book gives detailed insights on multi-level optimization by comprehensive explanations, step-by-step numerical examples and case studies, plots, and diagrams.




Integrated Uncertainty in Knowledge Modelling and Decision Making


Book Description

This book constitutes the refereed proceedings of the 7th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2019, held in Nara, Japan, in March 2019. The 37 revised full papers presented were carefully reviewed and selected from 93 submissions. The papers deal with all aspects of uncertainty modelling and management and are organized in topical sections on uncertainty management and decision support; econometrics; machine learning; machine learning applications; and statistical methods.




Mathematical Optimization and Economic Analysis


Book Description

"Mathematical Optimization and Economic Analysis" is a self-contained introduction to various optimization techniques used in economic modeling and analysis such as geometric, linear, and convex programming and data envelopment analysis. Through a systematic approach, this book demonstrates the usefulness of these mathematical tools in quantitative and qualitative economic analysis. The book presents specific examples to demonstrate each technique’s advantages and applicability as well as numerous applications of these techniques to industrial economics, regulatory economics, trade policy, economic sustainability, production planning, and environmental policy. Key Features include: - A detailed presentation of both single-objective and multiobjective optimization; - An in-depth exposition of various applied optimization problems; - Implementation of optimization tools to improve the accuracy of various economic models; - Extensive resources suggested for further reading. This book is intended for graduate and postgraduate students studying quantitative economics, as well as economics researchers and applied mathematicians. Requirements include a basic knowledge of calculus and linear algebra, and a familiarity with economic modeling.




Cooperative and Noncooperative Multi-Level Programming


Book Description

To derive rational and convincible solutions to practical decision making problems in complex and hierarchical human organizations, the decision making problems are formulated as relevant mathematical programming problems which are solved by developing optimization techniques so as to exploit characteristics or structural features of the formulated problems. In particular, for resolving con?ict in decision making in hierarchical managerial or public organizations, the multi level formula tion of the mathematical programming problems has been often employed together with the solution concept of Stackelberg equilibrium. However,weconceivethatapairoftheconventionalformulationandthesolution concept is not always suf?cient to cope with a large variety of decision making situations in actual hierarchical organizations. The following issues should be taken into consideration in expression and formulation of decision making problems. Informulationofmathematicalprogrammingproblems,itistacitlysupposedthat decisions are made by a single person while game theory deals with economic be havior of multiple decision makers with fully rational judgment. Because two level mathematical programming problems are interpreted as static Stackelberg games, multi level mathematical programming is relevant to noncooperative game theory; in conventional multi level mathematical programming models employing the so lution concept of Stackelberg equilibrium, it is assumed that there is no communi cation among decision makers, or they do not make any binding agreement even if there exists such communication. However, for decision making problems in such as decentralized large ?rms with divisional independence, it is quite natural to sup pose that there exists communication and some cooperative relationship among the decision makers.