Mathematical Encounters and Pedagogical Detours


Book Description

This book explores the idea that mathematics educators and teachers are also problem solvers and learners, and as such they constantly experience mathematical and pedagogical disturbances. Accordingly, many original tasks and learning activities are results of personal mathematical and pedagogical disturbances of their designers, who then transpose these disturbances into learning opportunities for their students. This learning-transposition process is a cornerstone of mathematics teacher education as a lived, developing enterprise. Mathematical Encounters and Pedagogical Detours unfold the process and illustrate it by various examples. The book engages readers in original tasks, shares the results of task implementation and describes how these results inform the development of new tasks, which often intertwine mathematics and pedagogy. Most importantly, the book includes a dialogue between the authors based on the stories of their own learning, which triggers continuous exploration of learning opportunities for their students.




Voluntary Detours


Book Description

After visiting hundreds of museums across Alberta, Lianne McTavish chronicles some of the most challenging and unexpected sites where the idea of the museum is being reshaped. The concept of the visit as a “voluntary detour” encapsulates the way visitors travel along backroads to find small-town and rural museums, as well as the agreement to turn away from standard museum scripts when they arrive. Addressing themes of place, land, colonization, rurality, heritage, childhood, and play, McTavish reveals the museum visitor as multifaceted, with locals and tourists often interpreting museums very differently. Case studies include the World Famous Gopher Hole Museum, Fort Chipewyan Bicentennial Museum, Blackfoot Crossing Historical Park, and the Museum of Fear and Wonder. A key chapter analyzing sites devoted to resource extraction explores how these places promote settler colonial understandings of land use. By contrast, Indigenous museums and cultural centres defy colonial messages in displays that adapt and refuse conventional museum formats. Honouring local, rural, and Indigenous knowledge, Voluntary Detours enriches critical accounts of the past, present, and future of museums.




Developing Math Talent


Book Description

Build student success in math with the only comprehensive guide for developing math talent among advanced learners. The authors, nationally recognized math education experts, offer a focused look at educating gifted and talented students for success in math. More than just a guidebook for educators, this book offers a comprehensive approach to mathematics education for gifted students of elementary or middle school age. The authors provide concrete suggestions for identifying mathematically talented students, tools for instructional planning, and specific programming approaches. Developing Math Talent features topics such as strategies for identifying mathematically gifted learners, strategies for advocating for gifted children with math talent, how to design a systematic math education program for gifted students, specific curricula and materials that support success, and teaching strategies and approaches that encourage and challenge gifted learners.




Pedagogy of the Oppressed


Book Description




Reggio-Inspired Mathematics


Book Description

This booklet documents our school district's collaborative inquiry project looking at how Reggio-inspired practices can inform and enhance primary mathematics teaching and learning.




Viewpoints


Book Description

An undergraduate textbook devoted exclusively to relationships between mathematics and art, Viewpoints is ideally suited for math-for-liberal-arts courses and mathematics courses for fine arts majors. The textbook contains a wide variety of classroom-tested activities and problems, a series of essays by contemporary artists written especially for the book, and a plethora of pedagogical and learning opportunities for instructors and students. Viewpoints focuses on two mathematical areas: perspective related to drawing man-made forms and fractal geometry related to drawing natural forms. Investigating facets of the three-dimensional world in order to understand mathematical concepts behind the art, the textbook explores art topics including comic, anamorphic, and classical art, as well as photography, while presenting such mathematical ideas as proportion, ratio, self-similarity, exponents, and logarithms. Straightforward problems and rewarding solutions empower students to make accurate, sophisticated drawings. Personal essays and short biographies by contemporary artists are interspersed between chapters and are accompanied by images of their work. These fine artists--who include mathematicians and scientists--examine how mathematics influences their art. Accessible to students of all levels, Viewpoints encourages experimentation and collaboration, and captures the essence of artistic and mathematical creation and discovery. Classroom-tested activities and problem solving Accessible problems that move beyond regular art school curriculum Multiple solutions of varying difficulty and applicability Appropriate for students of all mathematics and art levels Original and exclusive essays by contemporary artists Forthcoming: Instructor's manual (available only to teachers)




Values and Valuing in Mathematics Education


Book Description

This engaging open access book discusses how a values and valuing perspective can facilitate a more effective mathematics pedagogical experience, and allows readers to explore multiple applications of the values perspective across different education systems. It also clearly shows that teaching mathematics involves not only reasoning and feelings, but also students’ interactions with their cultural setting and each other. The book brings together the work of world leaders and new thinkers in mathematics educational research to improve the learning and teaching of mathematics. Addressing themes such as discovering hidden cultural values, a multicultural society and methodological issues in the investigation of values in mathematics, it stimulates readers to consider these topics in cross-cultural ways, and offers suggestions for research and classroom practice. It is a valuable resource for scholars of mathematics education, from early childhood through to higher education and an inspiring read for all mathematics teachers.




Explanatory Models, Unit Standards, and Personalized Learning in Educational Measurement


Book Description

The papers by Jack Stenner included in this book document the technical details of an art and science of measurement that creates new entrepreneurial business opportunities. Jack brought theory, instruments, and data together in ways that are applicable not only in the context of a given test of reading or mathematics ability, but which more importantly catalyzed literacy and numeracy capital in new fungible expressions. Though Jack did not reflect in writing on the inferential, constructive processes in which he engaged, much can be learned by reviewing his work with his accomplishments in mind. A Foreword by Stenner's colleague and co-author on multiple works, William P. Fisher, Jr., provides key clues concerning (a) how Jack's understanding of measurement and its values aligns with social and historical studies of science and technology, and (b) how recent developments in collaborations of psychometricians and metrologists are building on and expanding Jack's accomplishments. ​This is an open access book.




Mathematics and Computation


Book Description

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography




A Programmer's Introduction to Mathematics


Book Description

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.