Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration


Book Description

The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.




Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration


Book Description

The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.




Topological Methods in Data Analysis and Visualization IV


Book Description

This book presents contributions on topics ranging from novel applications of topological analysis for particular problems, through studies of the effectiveness of modern topological methods, algorithmic improvements on existing methods, and parallel computation of topological structures, all the way to mathematical topologies not previously applied to data analysis. Topological methods are broadly recognized as valuable tools for analyzing the ever-increasing flood of data generated by simulation or acquisition. This is particularly the case in scientific visualization, where the data sets have long since surpassed the ability of the human mind to absorb every single byte of data. The biannual TopoInVis workshop has supported researchers in this area for a decade, and continues to serve as a vital forum for the presentation and discussion of novel results in applications in the area, creating a platform to disseminate knowledge about such implementations throughout and beyond the community. The present volume, resulting from the 2015 TopoInVis workshop held in Annweiler, Germany, will appeal to researchers in the fields of scientific visualization and mathematics, domain scientists with an interest in advanced visualization methods, and developers of visualization software systems.




Human-Centered Visualization Environments


Book Description

This tutorial book features an augmented selection of the material presented at the GI-Dagstuhl Research Seminar on Human-Centered Visualization Environments, HCVE 2006, held in Dagstuhl Castle, Germany in March 2006. It presents eight tutorial lectures that are the thoroughly cross-reviewed and revised versions of the summaries and findings presented and discussed at the seminar.




Heterogeneous Spatial Data


Book Description

New data acquisition techniques are emerging and are providing fast and efficient means for multidimensional spatial data collection. Airborne LIDAR surveys, SAR satellites, stereo-photogrammetry and mobile mapping systems are increasingly used for the digital reconstruction of the environment. All these systems provide extremely high volumes of raw data, often enriched with other sensor data (e.g., beam intensity). Improving methods to process and visually analyze this massive amount of geospatial and user-generated data is crucial to increase the efficiency of organizations and to better manage societal challenges. Within this context, this book proposes an up-to-date view of computational methods and tools for spatio-temporal data fusion, multivariate surface generation, and feature extraction, along with their main applications for surface approximation and rainfall analysis. The book is intended to attract interest from different fields, such as computer vision, computer graphics, geomatics, and remote sensing, working on the common goal of processing 3D data. To this end, it presents and compares methods that process and analyze the massive amount of geospatial data in order to support better management of societal challenges through more timely and better decision making, independent of a specific data modeling paradigm (e.g., 2D vector data, regular grids or 3D point clouds). We also show how current research is developing from the traditional layered approach, adopted by most GIS softwares, to intelligent methods for integrating existing data sets that might contain important information on a geographical area and environmental phenomenon. These services combine traditional map-oriented visualization with fully 3D visual decision support methods and exploit semantics-oriented information (e.g., a-priori knowledge, annotations, segmentations) when processing, merging, and integrating big pre-existing data sets.




Interactive Knowledge Discovery and Data Mining in Biomedical Informatics


Book Description

One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of = 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning./ppThis state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.




New Developments in the Visualization and Processing of Tensor Fields


Book Description

Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.




Mathematical Morphology


Book Description

Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foundation, a large body of applications and an efficient implementation. The book is divided into five parts and includes 20 chapters. The five parts are structured as follows: Part I sets out the fundamental aspects of the discipline, starting with a general introduction, followed by two more theory-focused chapters, one addressing its mathematical structure and including an updated formalism, which is the result of several decades of work. Part II extends this formalism to some non-deterministic aspects of the theory, in particular detailing links with other disciplines such as stereology, geostatistics and fuzzy logic. Part III addresses the theory of morphological filtering and segmentation, featuring modern connected approaches, from both theoretical and practical aspects. Part IV features practical aspects of mathematical morphology, in particular how to deal with color and multivariate data, links to discrete geometry and topology, and some algorithmic aspects; without which applications would be impossible. Part V showcases all the previously noted fields of work through a sample of interesting, representative and varied applications.




Cellular Automata in Image Processing and Geometry


Book Description

The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of massive parallel computing devices. The book will provide attractive reading for a general audience because it has do-it-yourself appeal: all the computer experiments presented within it can be implemented with minimal knowledge of programming. The simplicity yet substantial functionality of the cellular automaton approach, and the transparency of the algorithms proposed, makes the text ideal supplementary reading for courses on image processing, parallel computing, automata theory and applications.




27th International Meshing Roundtable


Book Description

The International Meshing Roundtable (IMR) brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modelling, computer graphics, and visualization.