Mathematical Foundations of Statistical Mechanics


Book Description

Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.




Mathematical Foundations of Statistical Mechanics


Book Description

Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.




Foundations of Statistical Mechanics


Book Description

International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calculating probabilities in terms of dynamic quantities. Other chapters provide a careful analysis of the significant notion of entropy, which shows the links between thermodynamics and statistical mechanics and also between communication theory and statistical mechanics. The final chapter deals with the thermodynamic concept of entropy. This book is intended to be suitable for students of theoretical physics. Probability theorists, statisticians, and philosophers will also find this book useful.




Mathematical Foundations of Classical Statistical Mechanics


Book Description

This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.




The Conceptual Foundations of the Statistical Approach in Mechanics


Book Description

Classic 1912 article reformulated the foundations of the statistical approach in mechanics. Largely still valid, the treatment covers older formulation of statistico-mechanical investigations, modern formulation of kineto-statistics of the gas model, and more. 1959 edition.




Mathematical Statistical Mechanics


Book Description

While most introductions to statistical mechanics are either too mathematical or too physical, Colin Thompson's book combines mathematical rigor with familiar physical materials. Following introductory chapters on kinetic theory, thermodynamics, the Gibbs ensembles, and the thermodynamic limit, later chapters discuss the classical theories of phase transitions, the Ising model, algebraic methods and combinatorial methods for solving the two-dimensional model in zero field, and some applications of the Ising model to biology. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Mathematical Foundations of Quantum Mechanics


Book Description

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books




Algebraic Methods in Statistical Mechanics and Quantum Field Theory


Book Description

This systematic algebraic approach offers a careful formulation of the problems' physical motivations as well as self-contained descriptions of the mathematical methods for arriving at solutions. 1972 edition.







Introduction to Mathematical Statistical Physics


Book Description

This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.